Abstract Eclogite and blueschist facies rocks occurring as a tectonic unit between the underlying Menderes Massif (MM) and the overlying Afyon Zone/Lycian Nappes and the Bornova Flysch Zone in western Anatolia represent the eastward continuation of the Cycladic Blueschist Unit (CBU) in Turkey. This high‐ P unit is attributed to the closure of the Pindos Ocean and consists of (a) a Triassic to Upper Cretaceous coherent series derived from passive continental margin sediments and (b) the tectonically overlying Upper Cretaceous Selçuk mélange with eclogite blocks embedded in a pelitic epidote‐blueschist matrix. The coherent series has experienced epidote‐blueschist facies metamorphism (490 ± 25°C/11.5 ± 1.5 kbar; 38 km depth). 40 Ar/ 39 Ar white mica and 206 Pb/ 238 U monazite dating of quartz metaconglomerate from coherent series yielded middle Eocene ages of 44 ± 0.3 and 40.1 ± 3.1 Ma for epidote‐blueschist facies metamorphism, respectively. The epidote‐blueschist facies metamorphism of the matrix of the Selçuk mélange culminates at 520 ± 15°C/13 ± 1.5 kbar, 43 km depth, and is dated at 57.5 ± 0.3–54.5 ± 0.1 Ma ( 40 Ar/ 39 Ar phengite). Eclogite facies metamorphism of the blocks (570 ± 30°C/18 ± 2 kbar, 60 km depth) is early Eocene and dated at 56.2 ± 1.5 Ma by 206 Pb/ 238 U zircon. Eclogites experienced a nearly isothermal retrogression (490 ± 40°C/~6 to 7 kbar) during their incorporation into the Selçuk mélange. The retrograde overprints of the coherent series (410 ± 15°C/7 ± 1.5 kbar from Dilek Peninsula and 485 ± 33°C/~6 to 7 kbar from Selçuk–Tire area) and the Selçuk mélange (510 ± 15°C/6 ± 1 kbar) are dated at 35.8 ± 0.5–34.3 ± 0.1 Ma by 40 Ar/ 39 Ar white mica and 31.6 ± 6.6 Ma by 206 Pb/ 238 U allanite dating methods, respectively. Regional geological constrains reveal that the contact between the MM and the CBU originally formed a lithosphere‐scale transform fault zone. 40 Ar/ 39 Ar white mica age from the contact indicates that the CBU and the MM were tectonically juxtaposed under greenschist facies conditions during late Eocene, 35.1 ± 0.3 Ma.
Metamorphic evolution of an epidote–lawsonite blueschist sample characterized by the coexistence of lawsonite and epidote from Sivrihisar area (Tavşanlı Zone) was studied herein in terms of petrology and mineral equilibria. Based on the textural evidence and phase composition, 2 prograde stages, defined by assemblage-I and -II, and 1 retrograde stage were recognized. Assemblage-I indicates epidote-blueschist facies conditions (12 ± 1 kbar / 485 ± 10 °C). Assemblage-II is characterized by the coexistence of epidote and lawsonite (17 ± 1 kbar / 515 ± 10 °C) corresponding to the interface of lawsonite blueschist and epidote blueschist facies. Phase diagram calculations and mineral compositions revealed that along this interface, an equilibrium field with lawsonite and epidote is stable. This closed-equilibrium field is controlled by high aH2O and an elevated Fe3+/Al ratio of minerals. Pressure-temperature (P–T) estimates and textural observations indicated a counter-clockwise path during the subduction and exhumation history. The preservation of lawsonite and epidote during the retrograde stage pointed to the fact that the path followed the stability field of lawsonite and epidote during exhumation.