Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that "tight" NF can be equal or "better" than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and full-scale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used.
Sieving of Dutch raw sewage over a 350 μm screen, produces a cake layer called fine sieved fraction (FSF), an energy-rich material that contains mainly cellulosic fibers originating from toilet paper. The FSF biomethane potential (BMP) was studied under both mesophilic (35 °C) and thermophilic (55 °C) conditions, whereas the stability of the fed-batch digesters at both 35 °C and 55 °C was researched by varying the inoculum to substrate ratios (RI/S: 0.5–15). Results clearly showed advantages of thermophilic conditions over mesophilic conditions at all tested RI/S. Stable digestion was even possible at an RI/S of 0.5 at 55 °C. Following the results of the batch tests, a compact high loaded thermophilic digester for on-site energy recovery from FSF was proposed. Based on the results of the study, high biogas production rates at high organic loading rates (OLRs) were predicted. In the energy balance calculations, surplus heat production from combined heat and power (CHP) was utilized to dry the digestate sludge before transportation to an incineration plant or for use in pyrolysis or gasification processes. Overall results showed the potential of generating 46% of the required energy for wastewater treatment via high rate FSF digestion and subsequent conversion of the bio-methane into electricity and heat. The net recoverable energy from fine sieving, anaerobic digestion of FSF, dewatering of digestate sludge and drying of dewatered digestate sludge amounted 287 MJ/ton FSF and 237 kW h electric/ton FSF at 23% TS.
Intermittent water supplies (IWS) are routinely experienced by drinking water distribution systems around the world, either due to ongoing operational practices or due to one off interruptions. During IWS events changing conditions may impact the endemic biofilms leading to hydraulic mobilisation of organic and inorganic materials attached to pipes walls with a resulting degradation in water quality. To study the impact of IWS on the microbiological and physico-chemical characteristics of drinking water, an experimental full-scale chlorinated pipe facility was operated over 60 days under realistic hydraulic conditions to allow for biofilm growth and to investigate flow resumption behaviour post-IWS events of 6, 48 and 144 hours. Turbidity and metal concentrations showed significant responses to flow restarting, indicating biofilm changes, with events greater than 6 hours generating more turbidity responses and hence discolouration risk. The increase in pressure when the system was restarted showed a substantial increase in total cell counts, while the subsequent increases in flow led to elevated turbidity and metals concentrations. SUVA254 monitoring indicated that shorter times of non-water supply increased the risk of aromatic organic compounds and hence risk of disinfection-by-products formation. DNA sequencing indicated that increasing IWS times resulted in increased relative abundance of potential pathogenic microorganisms, such as Mycobacterium, Sphingomonas, and the fungi Penicillium and Cladosporium. Overall findings indicate that shorter IWS result in a higher proportion of aromatic organic compounds, which can potentially react with chlorine and increase risk of disinfection-by-products formation. However, by minimising IWS times, biofilm-associated impacts can be reduced, yet these are complex ecosystems and much remains to be understood about how microbial interactions can be managed to best ensure continued water safe supply.