Abstract Earth’s mineral deposits show a non-uniform spatial distribution from the craton-scale, to the scale of individual mineral districts. Although this pattern of differential metal endowment is underpinned by lithospheric-scale processes the geological features that cause clustering of deposits remains enigmatic. The integration of geological and geophysical (seismic, gravity, and magnetotelluric) features has produced the first whole-of-crust image through an iconic Neoarchean volcanic complex and mineral district in the Abitibi Greenstone Belt, Superior Province, Canada. Observations indicate an asymmetry in surface geology, structure, and crustal architecture that defines deep transcrustal magmatic-hydrothermal upflow zones and the limits of the Noranda District ore system. Here, extreme volcanogenic massive sulfide (VMS) endowment is confined to a smaller area adjacent to an ancestral transcrustal structure interpreted to have localized and optimized magmatic and ore forming processes. Although lithospheric-scale evolutionary processes might act as the fundamental control on metal endowment, the new crustal reconstruction explains the clustering of deposits on both belt and district scales. The results highlight a strong magmatic control on metal and in particular Au endowment in VMS systems. Overprinting by clusters of ca. 30 Ma younger orogenic Au deposits suggest the ore systems accessed an upper lithospheric mantle enriched in Au and metals.
Abstract. The geometry of ancient faults at depth can only be mapped by high-resolution geophysical surveys such as seismic reflection profiling. Recent deep (35–48 km) reflection profiles acquired across the Archean southern Superior craton of North America provided such data with which to map in 3-D some major shear zones, many of which are associated with significant orogenic gold or VMS deposits. Most faults are (re)interpreted as thrusts; a few appear as sub-vertically aligned breaks in prominent reflectors. Sub-vertical faults possibly originated as syn-volcanic transform faults. Thrusting probably relates to the dominant phase of folding and horizontal shortening strain that occurred during the regional crustal deformation, mineralization and peak metamorphism at 2.72–2.66 Ga, associated with the Kenoran orogeny. Most deformation after this orogenic event resulted in modest lateral movement. Coincident magnetotelluric (MT) surveys indicate pervasive conductive minerals such as graphite/carbon and sulfides, exist within the mid-crust and in near-vertical channels within the more brittle and resistive upper (greenstone) crust. Many such channels, but not all, coincide with fault zones and mineral deposits. Palinspastic and paleomagnetic-based reconstructions suggest many faults had multiple periods of activity with changing vertical to horizontal offsets. Some faults appear paired, partitioning normal and oblique strains on vertical shear zones and dipping thrust zones, respectively.
The nature of lithospheric evolution and style of the driving tectonic processes during the growth and stabilisation of continental crust in the Archean remain enigmatic. The hotter, rheologically weak Archean crust would be unable to support thick orogens. Thus, gravitational collapse likely occurred when continental fragments became overthickened and/or when far-field stresses were relieved during the terminal stages of orogenesis. 3D magnetotelluric resistivity models of the Archean Superior Province, reveal the presence of low resistivity zones in the mid-lower crust that reflect a protracted history of magmatic-hydrothermal activity contemporaneous with construction and collapse. These include sub-vertical zones of low resistivity in the mid-upper crust, inferred to represent corridors of paleo-fluid flow along crustal-scale structural networks developed in response to terrane amalgamations. Subsequent orogenic collapse resulted in widespread lateral flow within the lower crust accommodated by sub-horizontal shear zones and included magmatic refertilisation. Thus, the preserved low-resistivity anomalies in the mid-lower crust represent an amalgamation of magmatic-hydrothermal and deformational processes that occurred during construction, peak orogenesis, and collapse in the Archean.
Magnetotelluric data were collected along eight lines perpendicular to the mineralized zone and alteration halo of the New Afton Cu-Au porphyry deposit. The data were collected at an interstation spacing of 100 m and a line spacing of 300 m, and with a bandwidth of approximately 0.01 to 10 000 Hz. Phase tensor maps show an approximately east-west delineation of the survey into northern and southern sections. Determinant phase maps show conductivities initially increasing with depth in the north and decreasing in the south, with this trend reversing at depth. Preliminary results from 3-D inversions show conductive cover underlain by more resistive material throughout most of the survey area, with notably lower resistivities to the north. Two linear northeast-southwest features, spatially associated with the New Afton and Pothook mineralization, are imaged crosscutting the primary east-west fault zone, with high resistivities in the north and low resistivities in the south.