• No information exists on the quince tree mechanisms to confront drought. • Quince trees were characterized by an extreme anisohydric behavior. • Active osmotic adjustment operated contributing to the maintenance of leaf turgor (stress tolerance mechanism). • Low apoplastic water contributed a steeper gradient in water potential between the leaf and the soil favouring water absorption. Quince tree ( Cydonia oblonga Mill.) is known for bearing fruits that are rich in nutrients and health-promoting compounds while requiring low inputs of agrochemicals, and maintenance, but no information exists on the mechanisms developed at the level of leaf water relations to confront water stress and recovery. For this reason, the purpose of the present study was to identify the strategy (isohydric or anisohydric) by which quince plants cope with water stress and to further elucidate the resistance mechanisms developed in response to water stress and during recovery. In summer 2016, field-grown own rooted 17-years old quince trees (cv. BA-29) were subjected to two irrigation treatments. Control (T0) plants were drip irrigated (105% ETo) to ensure non-limiting soil water conditions, while T1 plants were irrigated at the same level as used in T0, except that irrigation was withheld for 42 days during the linear fruit growth phase, after which irrigation returned to the levels of T0 (recovery period). During the experimental period, T0 and T1 received a total of 374 and 143 mm water, respectively, including rain water. The quince trees exhibited extreme anisohydric behaviour under the experimental conditions. As water stress developed and during the recovery period, the plants exhibited high hydraulic conductivity, probably the result of resistance to cavitation. From the beginning of water stress to the time of maximum water stress, leaf turgor was maintained, possibly due to active osmotic adjustment (stress tolerance mechanism). This leaf turgor maintenance may have contributed to the high leaf conductance, and, therefore, good leaf productivity. The low quince leaf apoplastic water fraction under water stress could be considered as another drought tolerance characteristic because if the accumulation of water in the apoplasm is avoided a steeper gradient in water potential between the leaf and the soil can take place under water stress, thus favouring water absorption.
The resistance mechanisms (stress avoidance and stress tolerance) developed by persimmon plants (Diospyros kaki L. f. grafted on Diospyros lotus L.) in response to mild water stress and the sensitivity of continuously (on a whole-day basis) and discretely (at predawn and midday) measured indicators of the plant water status were investigated in 3-year old 'Rojo Brillante' persimmon plants. Control (T0) plants were drip irrigated in order to maintain soil water content at levels slightly above soil field capacity (102.3% of soil field capacity) and T1 plants were drip irrigated for 33 days in order to maintain the soil water content at around 80% of soil field capacity. The results indicated persimmon plants confront a mild water stress situation by gradually developing stomata control (stress avoidance mechanism) and exhibiting some xeromorphic characteristic such as high leaf relative apoplastic water content, which could contribute to the retention of water at low leaf water potentials. In addition, sap flow measurements made by the heat-pulse technique were seen to be the most suitable method for estimating persimmon water status, because it provided the highest signal intensity (actual value/reference value):noise (coefficient of variation) ratio in almost all intervals of time considered and provides continuous and automated registers of the persimmon water status in real time.
The continuous monitoring of water stress will increase the accuracy of the deficit irrigation scheduling. Almonds are very sensitive to water stress conditions and an important water consumer. Recently, a novel approach to the use of trunk growth rate (TGR) data has been proposed for olive trees. These works suggested the use of TGR frequencies to evaluate water status of the trees. The aim of the current work was to compare the seasonal pattern of three different indicators derived from the daily curves of trunk diameter fluctuations with midday stem water potential. During three consecutive seasons (2017–2019), an irrigation experiment was carried out in a mature almond orchard (cv Vairo) at Dos Hermanas (Seville, Spain). Four irrigation treatments replicated in four blocks were evaluated using the daily curves of midday stem water potential and trunk diameter fluctuations. The different irrigation treatments were: Control, full irrigated conditions; RDI-1 (irrigation scheduling based on midday stem water potential with a deficit irrigation during kernel filling [values around −1.2 MPa]); RDI-2(similar to RDI-1 but with a more severe water stress [−2 MPa]) and incomplete recovery after harvest due to limitation of the seasonal amount of water (around 100 mm); SDI, sustained deficit irrigation with a seasonal applied water equal to RDI-2. Trunk diameter fluctuations were measured with a wireless band dendrometer. The daily curves were processed to obtain three different indicators. Maximum daily shrinkage (MDS) was the difference between the daily maximum and minimum. Trunk growth rate (TGR) was the difference between two consecutive daily maximums. The frequencies of several ranges of TGR were compared with the midday stem water potential. Weekly frequencies of values greater than 0.3 mm day−1 decreased with the reduction of midday stem water potential, but the pattern changed greatly in different seasons. The weekly frequency of values between − 0.1 and 0 and between 0 and 0.1 mm day−1 were steadier in different seasons. Differences between seasons were related to growth pattern and yield.
Abstract. Growing trees are quite vulnerable to cold temperatures. To minimise the effect of these cold temperatures, they stop their growth over the coldest months of the year, a state called dormancy. In particular, endodormancy requires accumulating chilling temperatures to finish this sort of dormancy. The accumulation of cool temperatures according to specific rules is called chilling accumulation, and each tree species and variety has specific chilling requirements for correct plant development. Under global warming, it is expected that the fulfilment of the chilling requirements to break dormancy in fruit trees could be compromised. In this study, the impact of climate change on the chilling accumulation over peninsular Spain and the Balearic Islands was assessed. For this purpose, bias-adjusted results of 10 regional climate models (RCMs) under Representative Concentration Pathways (RCPs) 4.5 and 8.5 were used as inputs of four different models for calculating chilling accumulation, and the results for each model were individually compared for the 2021–2050 and 2071–2100 future periods under both RCPs. These results project a generalised reduction in chilling accumulation regardless of the RCP, future period or chilling calculation model used, with higher reductions for the 2071–2100 period and the RCP8.5 scenario. The projected winter chill decrease may threaten the viability of some tree crops and varieties in some areas where the crop is currently grown, but also shows scope for varieties with lower chilling requirements. The results are relevant for planning future tree plantations under climate change, supporting adaptation of spatial distribution of tree crops and varieties in Spain.
Water scarcity presents an increasingly urgent challenge with global implications for the production of irrigated vegetables. Among these crops, tomatoes stand out as one of the most widely cultivated. Given their vulnerability to water stress, it is crucial to ensure efficient and sustainable water management for tomato irrigation. This study aims to compare physiological and biochemical parameters among three local and three commercial resilient tomato varieties in response to water stress and rehydration. We subjected tomato plants to either two brief periods of water stress (WE1) or one extended period of water stress (WE2), followed by rehydration. Our results did not reveal significant differences in the response to water stress among the varieties, which could be attributed to their respective origins. Following rehydration, the plants quickly returned to their normal physiological values. An exploration of oxidative stress markers revealed that oxidative damage occurred solely during the second episode of water stress in WE1 plants, or towards the conclusion of the prolonged water stress period in WE2 plants. However, after rehydration, tomato plants returned to normal oxidative parameters values, indicating the absence of irreversible damage. Although the severe water stress did not compromise the viability of the plants, all treatments and varieties exhibited a predictable and substantial growth inhibition. In conclusion, the different tomato varieties studied exhibited similar responses to water stress, primarily characterized by the inhibition of gas exchange processes and heightened oxidative stress. Nonetheless, none of the plants suffered irreversible damage from this stress.