Abstract. Gridded bottom-up inventories of CO2 emissions are needed in global CO2 inversion schemes as priors to initialize transport models and as a complement to top-down estimates to identify the anthropogenic sources. Global inversions require gridded datasets almost in near-real time that are spatially and methodologically consistent at a global scale. This may result in a loss of more detailed information that can be assessed by using regional inventories because they are built with a greater level of detail including country-specific information and finer resolution data. With this aim, a global mosaic of regional, gridded CO2 emission inventories, hereafter referred to as CoCO2-MOSAIC 1.0, has been built in the framework of the CoCO2 project. CoCO2-MOSAIC 1.0 provides gridded (0.1∘ × 0.1∘) monthly emissions fluxes of CO2 fossil fuel (CO2ff, long cycle) and CO2 biofuel (CO2bf, short cycle) for the years 2015–2018 disaggregated in seven sectors. The regional inventories integrated are CAMS-REG-GHG 5.1 (Europe), DACCIWA 2.0 (Africa), GEAA-AEI 3.0 (Argentina), INEMA 1.0 (Chile), REAS 3.2.1 (East, Southeast, and South Asia), and VULCAN 3.0 (USA). EDGAR 6.0, CAMS-GLOB-SHIP 3.1 and CAMS-GLOB-TEMPO 3.1 are used for gap-filling. CoCO2-MOSAIC 1.0 can be recommended as a global baseline emission inventory for 2015 which is regionally accepted as a reference, and as such we use the mosaic to inter-compare the most widely used global emission inventories: CAMS-GLOB-ANT 5.3, EDGAR 6.0, ODIAC v2020b, and CEDS v2020_04_24. CoCO2-MOSAIC 1.0 has the highest CO2ff (36.7 Gt) and CO2bf (5.9 Gt) emissions globally, particularly in the USA and Africa. Regional emissions generally have a higher seasonality representing better the local monthly profiles and are generally distributed over a higher number of pixels, due to the more detailed information available. All super-emitting pixels from regional inventories contain a power station (CoCO2 database), whereas several super-emitters from global inventories are likely incorrectly geolocated, which is likely because regional inventories provide large energy emitters as point sources including regional information on power plant locations. CoCO2-MOSAIC 1.0 is freely available at zenodo (https://doi.org/10.5281/zenodo.7092358; Urraca et al., 2023) and at the JRC Data Catalogue (https://data.jrc.ec.europa.eu/dataset/6c8f9148-ce09-4dca-a4d5-422fb3682389, last access: 15 May 2023; Urraca Valle et al., 2023).
The trends of terrestrial carbon exchange and their mechanistic drivers are key components in understanding how carbon reservoirs will respond to climate change. Here we show trends in seasonal non-fossil land-atmosphere carbon exchange from 1980 to 2008 using atmospheric CO2 inversion results. Four indices were analysed: growing-season net flux (GSNF), dormant-season net flux (DSNF), amplitude and annual net carbon flux (NCF). We find that the global land carbon sink is intensifying at -0.057 ± 0.01 PgC yr-2, resulting in -1.65 ± 0.29 PgC of additional uptake over the period examined. This increased total land uptake is driven by a decline in the DSNF (-0.04 ± 0.01 PgC yr-2) and intensification of the GSNF (-0.02 ± 0.008 PgC yr-2). Regional analysis shows the dominant role of the southern half of the African continent; intensification of the GSNF (-0.02 ± 0.005 PgC yr-2) and a decline in the DSNF (-0.013 ± 0.004 PgC yr-2) imply that Africa has shifted from a net carbon source in the 1980s to near-neutral emissions. By contrast, a weakening of the GSNF is found in temperate North America (0.015±0.007 PgC yr-2) and tropical America (0.01 ± 0.005 PgC yr-2).
Abstract Deforestation perturbs both biophysical and carbon feedbacks on climate. However, biophysical feedbacks operate at temporally immediate and spatially focused scales and thus may be sensitive to the rate of deforestation rather than just to total forest-cover loss. Explored here is a method for simulating annual tropical deforestation in the fully coupled Community Climate System Model, version 3.0 (CCSM3) with the Dynamic Global Vegetation Model (DGVM) for testing biosphere climate sensitivity to “preservation pathways.” Two deforestation curves were simulated—a 10% deforestation curve with a 10% preservation target (DFC10-PT10) versus a 1% deforestation curve with a 10% preservation target (DFC1-PT10). During active deforestation, albedo, net radiation, latent heat flux, and climate variables were compared for time dependence and sensitivity to tropical tree cover across the tropical band and the Amazon basin, central African, and Southeast Asian regions. The results demonstrated the feasibility of modeling incremental deforestation and detecting both transient and long-term impacts, although a warm/dry bias in CCSM3–DGVM and the absence of carbon feedbacks preclude definitive conclusions on the magnitude of sensitivities. The deforestation rates produced characteristic trends in biophysical variables with DFC10-PT10 resulting in rapid increase/decrease during the initial 10–30 years before leveling off, whereas DFC1-PT10 exhibits gradual changes. The rate had little effect on biophysical and climate sensitivities when averaged over tropical land but produced significant differences at a regional level. Over the long term, the rates produced dissimilar vegetation distributions, despite having the same preservation target in both cases. Overall, these results indicate that the question of rates is one worth further analysis.
Abstract Airborne mass balance experiments were conducted around the Washington, D.C.‐Baltimore area using research aircraft from Purdue University and the University of Maryland to quantify emissions of nitrogen oxides (NO x = NO + NO 2 ) and carbon monoxide (CO). The airborne mass balance experiments supported the Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign, an intensive airborne study of anthropogenic emissions along the Northeastern United States in February–March 2015, and the Fluxes of Atmospheric Greenhouse Gases in Maryland project which seeks to provide best estimates of anthropogenic emissions from the Washington, D.C.‐Baltimore area. Top‐down emission rates of NO x and CO estimated from the mass balance flights are compared with the Environmental Protection Agency's 2011 and 2014 National Emissions Inventory (NEI‐11 and NEI‐14). Inventory and observation‐derived NO x emission rates are consistent within the measurement uncertainty. Observed CO emission rates are a factor of 2 lower than reported by the NEI. The NEI's accuracy has been evaluated for decades by studies of anthropogenic emissions, yet despite continuous inventory updates, observation‐inventory discrepancies persist. WINTER NO x /CO 2 enhancement ratios are consistent with inventories, but WINTER CO/NO x and CO/CO 2 enhancement ratios are lower than those reported by other urban summertime studies, suggesting a strong influence of CO seasonal trends and/or nationwide CO reductions. There is a need for reliable observation‐based criterion pollutant emission rate measurements independent of the NEI. Such determinations could be supplied by the community's reporting of sector‐specific criteria pollutant/CO 2 enhancement ratios and subsequent multiplication with currently available and forthcoming high‐resolution CO 2 inventories.
Abstract We present a global dataset of anthropogenic carbon dioxide (CO 2 ) emissions for 343 cities. The dataset builds upon data from CDP (187 cities, few in developing countries), the Bonn Center for Local Climate Action and Reporting (73 cities, mainly in developing countries), and data collected by Peking University (83 cities in China). The CDP data being self-reported by cities, we applied quality control procedures, documented the type of emissions and reporting method used, and made a correction to separate CO 2 emissions from those of other greenhouse gases. Further, a set of ancillary data that have a direct or potentially indirect impact on CO 2 emissions were collected from other datasets (e.g. socio-economic and traffic indices) or calculated (climate indices, urban area expansion), then combined with the emission data. We applied several quality controls and validation comparisons with independent datasets. The dataset presented here is not intended to be comprehensive or a representative sample of cities in general, as the choice of cities is based on self-reporting not a designed sampling procedure.
Abstract. Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal, weekly and monthly) using a global tracer transport model. Results show an annual FFCO2 rectification varying from −1.35 to +0.13 ppm from the combination of all three cycles. This rectification is driven by a large negative diurnal FFCO2 rectification due to the covariation of diurnal FFCO2 emissions and diurnal vertical mixing, as well as a smaller positive seasonal FFCO2 rectification driven by the covariation of monthly FFCO2 emissions and monthly atmospheric transport. The diurnal FFCO2 emissions are responsible for a diurnal FFCO2 concentration amplitude of up to 9.12 ppm at the grid cell scale. Similarly, the monthly FFCO2 emissions are responsible for a simulated seasonal CO2 amplitude of up to 6.11 ppm at the grid cell scale. The impact of the diurnal FFCO2 emissions, when only sampled in the local afternoon, is also important, causing an increase of +1.13 ppmv at the grid cell scale. The simulated CO2 concentration impacts from the diurnally and seasonally varying FFCO2 emissions are centered over large source regions in the Northern Hemisphere, extending to downwind regions. This study demonstrates the influence of sub-annual variations in FFCO2 emissions on simulated CO2 concentration and suggests that inversion studies must take account of these variations in the affected regions.
Abstract. The UNFCCC (United Nations Framework Convention on Climate Change) requires the nations of the world to report their carbon dioxide (CO2) emissions. The independent verification of these reported emissions is a cornerstone for advancing towards the emission accounting and reduction measures agreed upon in the Paris Agreement. In this paper, we present the concept and first performance assessment of a compact spaceborne imaging spectrometer with a spatial resolution of 50×50 m2 that could contribute to the “monitoring, verification and reporting” (MVR) of CO2 emissions worldwide. CO2 emissions from medium-sized power plants (1–10 Mt CO2 yr−1), currently not targeted by other spaceborne missions, represent a significant part of the global CO2 emission budget. In this paper we show that the proposed instrument concept is able to resolve emission plumes from such localized sources as a first step towards corresponding CO2 flux estimates. Through radiative transfer simulations, including a realistic instrument noise model and a global trial ensemble covering various geophysical scenarios, it is shown that an instrument noise error of 1.1 ppm (1σ) can be achieved for the retrieval of the column-averaged dry-air mole fraction of CO2 (XCO2). Despite a limited amount of information from a single spectral window and a relatively coarse spectral resolution, scattering by atmospheric aerosol and cirrus can be partly accounted for in the XCO2 retrieval, with deviations of at most 4.0 ppm from the true abundance for two-thirds of the scenes in the global trial ensemble. We further simulate the ability of the proposed instrument concept to observe CO2 plumes from single power plants in an urban area using high-resolution CO2 emission and surface albedo data for the city of Indianapolis. Given the preliminary instrument design and the corresponding instrument noise error, emission plumes from point sources with an emission rate down to the order of 0.3 Mt CO2 yr−1 can be resolved, i.e., well below the target source strength of 1 Mt CO2 yr−1. This leaves a significant margin for additional error sources, like scattering particles and complex meteorology, and shows the potential for subsequent CO2 flux estimates with the proposed instrument concept.
[1] Studies indicate that, historically, terrestrial ecosystems of the northern high-latitude region may have been responsible for up to 60% of the global net land-based sink for atmospheric CO2. However, these regions have recently experienced remarkable modification of the major driving forces of the carbon cycle, including surface air temperature warming that is significantly greater than the global average and associated increases in the frequency and severity of disturbances. Whether Arctic tundra and boreal forest ecosystems will continue to sequester atmospheric CO2 in the face of these dramatic changes is unknown. Here we show the results of model simulations that estimate a 41 Tg C yr−1 sink in the boreal land regions from 1997 to 2006, which represents a 73% reduction in the strength of the sink estimated for previous decades in the late 20th century. Our results suggest that CO2 uptake by the region in previous decades may not be as strong as previously estimated. The recent decline in sink strength is the combined result of (1) weakening sinks due to warming-induced increases in soil organic matter decomposition and (2) strengthening sources from pyrogenic CO2 emissions as a result of the substantial area of boreal forest burned in wildfires across the region in recent years. Such changes create positive feedbacks to the climate system that accelerate global warming, putting further pressure on emission reductions to achieve atmospheric stabilization targets.