Abstract English walnut ( Juglans regia ), has high economic and ecological value. As an important tree species for eliminating poverty, it is planted in many Provinces of China. In 2021, new pathogenic fungi were observed in English walnut in Guangyuan City, Sichuan Province, China. The initial symptom of leaf infection is that the leaves are covered with small black spots, which gradually expand into larger brown spots. Most of the spots appeared at the edges of the leaves, and yellow whorls were observed at the junction between the spots and the healthy leaves. The pathogenic fungi were isoalted form collecting disease samples and purified by single-spore culturing. In vitro and field experiments showed that the pathogen could cause brown spots on walnut leaves. The inoculation experiment showed that the symptoms in the field experiment were the same as those observed on the spot; however, slight differences were observed in the in vitro experiment. Ten isolates were obtained from walnut leaves with brown spot symptoms, and these were further characterized based on morphology and DNA sequencing. ITS (internal transcribed spacer), LSU (large sub-unit rDNA), rpb 2 (second largest subunit of RNA polymerase) and tub 2 (beta-tubulin) gene regions were used to construct phylogenetic trees and determine the evolutionary relationships among the collected strains. The isolate was identified as Nothophoma quercina by morphological and polygene analyses. As far as we are aware, the brown spots on walnut leaves caused by N. quercina is the first report of its kind.
Bermudagrass (Cynodon dactylon (L.) Pers) turf is the most widely used turfgrass in urban landscapes. Large amounts of fertilizer are usually applied for maximum turf performance, while relatively little attention has been paid to efficient nutrient management of bermudagrass turf. The design opted for was a 3-factor and 5-level Central Composite Rotatable Design (CCRD) consisting of 24 experimental runs in the greenhouse with response surface methodology (RSM) and simulated regression modeling. The experiment covered in this study was carried out at Sichuan Agricultural University with the objectives of understanding the interactive effects of nitrogen, (N), phosphorus (P), and potassium (K) fertilization on the bermudagrass integrated turf performance (ITP) and optimizing the amount of N, P, and K required for optimum turf performance during establishment. The qualitative and quantitative relationships between bermudagrass and fertilization significantly affected the ITP. The N, P, and K Fertilization significantly influenced the percent grass cover, turf height, shoot dry weight, root dry weight, and total chlorophyll content. Fertilization with N and P significantly enhanced the tiller length, turf density, color, and total protein levels. Root length was augmented with the application of P and K. We found that 3-D surface plots indicated significant interactive effects of NP, NK, and PK on the ITP. A simulation optimization and frequency analysis indicated that the optimal combined amounts of these nutrients were N: 26.0–27.6 g m−2, P: 24.2–26.4 g m−2, and K: 3.1–5.0 g m−2 during the establishment phase. The results suggest that optimized fertilization is key to sustainable nutrient management of bermudagrass integrated turf performance.
Elemental defense hypothesis suggests that toxic metals accumulated in plant tissues could enhance plant defense against herbivores and pathogens. Since over-accumulation of metals in plant organs will pose negative effects on plant health, it is necessary to find a way to alleviate metal-induced toxicity in plants while keeping or even improving plant resistance. Exogenous nitrogen (N) application was reported to have such alleviation effect while stimulating metal accumulation in plant tissues. In this study, we examined whether soil N addition in three different doses to a poplar species under cadmium (Cd) stress can simultaneously improve plant growth and resistance to four herbivorous insects and a leaf pathogen. The results showed that N application to Cd-amended soil prominently enhanced plant growth and leaf Cd accumulation. While N addition in three doses all remarkably reduced herbivore growth than control plants, only the highest N dose exerted stronger inhibition than the sole Cd-treated plants. In the paired-choice experiment, plants supplied with the highest N dose showed an enhanced deterrent effect on herbivore preference than plants exposed to sole Cd. Furthermore, plant resistance to the leaf pathogen infection was strongly enhanced as the levels of N addition increased. Leaf sugar and three main defensive chemicals were not affected by N application implied that such enhanced effect of N on plant resistance was due to increased leaf Cd accumulation. Our results suggested that the application of exogenous N over a certain amount could enhance the resistance of Cd-treated plants to leaf herbivory and pathogen infection.
Thaumatin-like proteins (TLPs) are involved in the plant defense response against pathogens, and most of them exhibit antifungal activity. However, the role of TLPs in pathogen-induced defense responses in spruce is not fully understood. In this study, four TLP genes encoding thaumatin-like protein, designated as PlTLP1–4, were isolated and identified from Picea likiangensis needles. Sequence analysis showed that PlTLP1, PlTLP3, and PlTLP4 contained 16 conserved cysteine residues, while PlTLP2 had only 10 conserved cysteine residues. qPCR analysis showed that PlTLPs were expressed in all tissues tested, PlTLP1, PlTLP3, and PlTLP4 had the highest expression levels in young fruits, while PlTLP2 had the highest expression levels in roots. In addition, the expression levels of four PlTLPs were significantly upregulated during infection by Lophodermium piceae. Four recombinant PlTLPs expressed in Escherichia coli exhibited obvious β-1,3-glucanase activity. The antifungal activity assay showed that four recombinant PlTLPs had significant inhibitory effects on the mycelial growth of L. piceae, Fusarium proliferatum, Botrytis cinerea, and Roussoella doimaesalongensis. Microscopic observation revealed that the recombinant PlTLP1–4 induced the morphological changes of the mycelia of L. piceae, and the recombinant PlTLP2 and PlTLP3 induced the morphological changes of the mycelia of F. proliferatum and R. doimaesalongensis, while all the recombinant PlTLPs had no obvious negative effect on the morphology of B. cinerea mycelium. These results suggest that PlTLP genes may play an important role in the defense response of P. likiangensis against L. piceae invasion.
As an important nonwood bioresource, fishscale bamboo (Phyllostachys heteroclada Oliver) is widely distributed in the subtropical region of China. Rhombic-spot disease, caused by Neostagonosporella sichuanensis, is one of the most serious diseases that threatens fishscale bamboo health. However, there is limited knowledge about how rhombic-spot disease influences the diversity and structures of phyllosphere fungal communities. In this study, we investigated the phyllosphere fungal communities from stems, branches, and leaves of fishscale bamboo during a rhombic-spot disease outbreak using 18S rRNA sequencing. We found that only the phyllosphere fungal community from stems was significantly affected by pathogen invasion in terms of community richness, diversity, and structure. FUNGuild analysis revealed that the major classifications of phyllosphere fungi based on trophic modes in stems, branches, and leaves changed from symbiotroph-pathotroph, no obvious dominant trophic mode, and symbiotroph to saprotroph, saprotroph–pathotroph–symbiotroph, and saprotroph–symbiotroph, respectively, after pathogen invasion. The fungal community composition of the three tissues displayed significant differences at the genus level between healthy and diseased plants. The associations among fungal species in diseased samples showed more complex co-occurrence network structures than those of healthy samples. Taken together, our results highlight the importance of plant pathological conditions for the assembly of phyllosphere fungal communities in different tissues.
Zanthoxylum armatum, a significant forest plant in southwestern China, is crucial for preserving soil and water resources. However, the presence of root rot disease has led to plant death, impacting the pepper sector. Effective control measures for this disease are still lacking. Rhizosphere microorganisms play a vital role in plant health by inhibiting plant pathogens and inducing plant resistance. This research aimed to isolate and characterize the pathogen responsible for root rot disease in Z. armatum. Comparative analysis of fungal and bacterial communities in the rhizosphere soil of healthy and diseased plants revealed Fusarium solani as the pathogenic fungus causing root rot disease. Diseased plants had a higher occurrence of Fusarium spp., while disease-free plants had a higher abundance of ecologically beneficial microbial communities that could potentially serve as biocontrol agents. Three bacterial strains (Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus siamensis) were identified as effective biocontrol agents, inhibiting the growth of the pathogenic fungus F. solani both in vivo and in vitro. This study deepens our understanding of the rhizosphere soil microbial community differences between diseased and healthy Z. armatum, providing potential biocontrol bacteria to enhance plant resistance against root rot disease.