Abstract The Hesar pluton in the northern Urumieh–Dokhtar magmatic arc hosts numerous mafic‐microgranular enclaves (MMEs). Whole rock geochemistry, mineral chemistry, zircon U‐Pb and Sr‐Nd isotopes were measured. It is suggested that the rocks are metaluminous (A/CNK = 1.32–1.45), subduction‐related I‐type calc‐alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures. The host rocks yielded an U‐Pb crystallization age of 37.3 ± 0.4 Ma for gabbro‐diorite. MMEs have relatively low SiO 2 contents (52.9–56.6 wt%) and high Mg # (49.8–58.7), probably reflecting a mantle‐derived origin. Chondrite‐ and mantle‐normalized trace element patterns are characterized by LREE and LILE enrichment, HREE and HFSE depletion with slight negative Eu anomalies (Eu/Eu* = 0.86–1.03). The host rocks yield ( 87 Sr/ 86 Sr) i ratios of 0.70492–0.70510, positive ε Nd ( t ) values of +1.55–+2.06 and T DM2 of 707–736 Ma, which is consistent with the associated mafic microgranular enclaves (( 87 Sr/ 86 Sr) i = 0.705014, ε Nd ( t ) = +1.75, T DM2 = 729 Ma). All data suggest magma‐mixing for enclave and host rock formation, showing a complete equilibration between mixed‐mafic and felsic magmas, followed by rapid diffusion. The T DM1 (Nd) and T DM2 (Nd) model ages and U‐Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantle‐derived magmas in a pre‐collisional setting of Arabian–Eurasian plates. Clinopyroxene composition indicates a crystallization temperature of ∼1000°C and a depth of ∼9 km.
Abstract The Zargoli granite, which extends in a northeast–southwest direction, intrudes into the Eocene–Oligocene regional metamorphic flysch‐type sediments in the northwest of Zahedan. This pluton, based on modal and geochemical classification, is composed of biotite granite and biotite granodiorite, was contaminated by country rocks during its emplacement, and is slightly changed to more aluminous. The SiO 2 content of these rocks range from 62.4 to 66 wt% with an alumina saturation index of Shand [molar Al 2 O 3 /(CaO + Na 2 O + K 2 O)] ∼ 1.1. Most of its chemical variations could be explained by fractionation or heterogeneous distribution of biotite. The features of the rocks resemble those which are typical to post‐collisional granitoids. Chondrite‐normalized rare‐earth element patterns of these rocks are fractionated at (La/Lu) N = 2.25–11.82 with a pronounced negative Eu anomaly (Eu/Eu* = 3.25–5.26). Zircon saturation thermometry provides a good estimation of magma temperatures (767.4–789.3°C) for zircon crystallization. These characteristics together with the moderate Mg# [100Mg/(Mg + Fe)] values (44–55), Fe + Mg + Ti (millications) = 130–175, and Al–(Na + K + 2Ca) (millications) = 5–50 may suggest that these rocks have been derived from the dehydration partial melting of quartz–feldspathic meta‐igneous lower crust.
The Nodoushan plutonic complex in the central part of the Urumieh–Dokhtar Magmatic Belt developed mainly in the Cenozoic in response to the final stages of subduction-related magmatism that preceded the post-Oligocene collision between the Arabian and Eurasian Plates. Despite numerous recent studies examining the deformation and related exhumation history of the Arabia–Eurasia collision zone, the exhumation history of the Urumieh–Dokhtar Magmatic Belt (making up the majority of the Iranian Plateau) is largely unknown. In this work, apatite and zircon (U-Th)/He thermochronometry and thermal modelling analysis are applied to the (mainly) granitoid intrusive bodies in the Nodushan Plutonic complex in order to unravel the exhumation history of this region in the context of collisional tectonics. The results document two main phases of exhumation in the early Miocene (~ 22–20 Ma) and middle Miocene (~ 11 Ma). The distribution of (U-Th)/He ages suggests that these deformation episodes are related to the collision between the Arabian and Eurasian Plates. The ‘soft’ initial stages of Arabia–Eurasia collision in the Nodoushan plutonic complex occurred when the stretched Arabian passive margin reached the subduction zone in the early Miocene. Subsequently, the final ‘hard’ collision with the harder continental margin occurred in the middle Miocene. The results of this work mark the first thermochronometric data related to SE Iranian Plateau evolution and identify exhumation that initiated in the early Miocene and developed regionally during middle Miocene times.
توده مافیک- اولترامافیک قره آغاج در فاصله 36 کیلومتری شمال باختر ارومیه قرار دارد. این توده از لحاظ سنگشناسی از دو بخش اصلی شامل سنگهای مافیک بدون کانیسازی و سنگهای اولترامافیک غنی از Fe-Ti-P (سنگهای FTP) تشکیل یافته است. بخش مافیک به طور غالب حاوی گابروی درشت بلور، میکروگابرو و متاگابرو با مجموعه کانیایی ساده (پلاژیوکلاز+ کلینوپیروکسن و ایلمنیت) و ارتوآمفیبولیت است. بر اساس روابط صحرایی، شواهد سنگنگاری و زمینشیمیایی، این سنگها رابطه بسیار نزدیکی با یکدیگر داشته و هم ماگما محسوب میشوند. بخش اولترامافیک از تعداد زیادی لایه و توده سیل مانند به ستبرای 5 سانتیمتر تا چند متر تشکیل یافته، به گونهای که به طور کامل توسط گابروها احاطه شده و با میزبان، همبری ناگهانی، موازی و همشیب دارد. این سنگها در مقایسه با سنگهای اولترامافیک متعارف، مجموعه کانیایی (غنی از اولیوین، آپاتیت، ایلمنیت و مگنتیت) و همچنیــــــــــن ترکیب شیمیایی غیرعــــادی نشــــان میدهند (ppm340-10, ΣREE~ ppm 160-40 ~ Cr , ppm 73-7 ~ Ni , %wt 1/5-1/0, P2O5~%wt 42-26 Fe2O3t~ , %wt 11-5 TiO2~ , %wt 20-9 MgO~ ,%wt 30-21SiO2~). سنگهای FTP اغلب برگوارگی ماگمایی داشته و در مجموع گسترش آنها از روند عمومی توده قره آغاج (NW-SE) پیروی میکند. شواهد صحرایی، سنگنگاری و دادههای زمینشناسی حاکی از این است که سنگهای FTP و میزبان گابرویی آنها با یکدیگر ارتباط زایشی مشخصی ندارند، به گونهای که انواع FTP (مشتق از ماگمای فروبازالتی غنی از P) به صورت تأخیری به درون سنگهای میزبان در حال دگرشکلی پلاستیک دمای بالا در یک زون برشی محلی نفوذ کردهاند.
The Urumieh-Dokhtar Magmatic Arc (UDMA) is part of the Alpine–Himalayan orogenic belt and interpreted to be a subduction-related Andean-type magmatic arc. Along this belt, Eocene volcanics and some gabbroic to granitic bodies crop out. The main rock types of the studied intrusion are granite, granodiorite, and diorite. They have geochemical features typical of magnesian, calc-alkaline, metaluminous to slightly peraluminous granites and I-type intrusive rock that have a strong enrichment in Large-Ion Lithophile (LIL) elements (e.g. Rb, Ba, Sr), and a depletion in High Field Strength (HFS) elements (e.g. Nb, Ti, P), typical of subduction-related magmas. Zircon U-Pb dating was applied to determine the emplacement ages of the different intrusions in the Ardestan area. Among them the Kuh-e Dom diorite is 53.9±0.4Ma old; the Kuh-e Dom granodiorite is 51.10±0.4Ma old; the Mehrabad granodiorite is 36.8±0.5Ma old, the Nasrand granodiorite is 36.5±0.5Ma old, the Zafarghand granodiorite is 24.6±1.0Ma old, and the Feshark granodiorite is 20.5±0.8Ma old. These results delineate more accurately the magmatic evolution related to the Neotethyan subduction from the Lower Eocene to Lower Miocene, and the subsequent Zagros orogeny that resulted from the Arabia-Eurasia collision. The emplacement of these intrusive rocks inside the UDMA, which has a close relationship with the collisional orogeny, is transitional from a subduction-related setting to post-collisional setting in the Ardestan area.
The Lakhshak granitoid intrusion is cropping out in the northwest of the Zahedan, East south of Iran, as an elongated and deformed pluton between Lut and Afghan blocks. The south and southwest marginal part of this intrusion suffered mineralogical and textural changes during solid-state deformations. Due to mylonitization, the size and modal abundance of feldspar porphyroclasts in mylonite had decreased, whereas the modal abundance of small grains of biotite, plagioclase, K-feldspar and quartz had increased. C-axis quartz measurement and petrography study of Lakhshak granodiorite mylonite show that most of the quartz recrystallized with grain boundary migration mechanism. This recrystallization take place over 630 30oC temperatures. Most of the quartz deformed with prism [C] slip and maximum C-axis of these grains is close X-axis stereogram. Prism [C] slip occurs over 550600oC temperatures. Quartzes were deformed in during flatting ellipsoid stress and those C-axes occur to girdles shape around stereogram Z axis. Opening angle of the C-axis girdles range from 79-114 that measured in The XZ plane through Z and using of Opening angle thermometer show that Lakhshak granodiorite mylonites were deformed in 585-730oC temperatures. plagioclase replaced by intergrowth quartz and feldspar with granophyric texture, presence of fine grains of quartz, feldspar and biotite aggregates grains in fracture-controlled openings in the primary feldspar crystals, presence of the unreformed granophiric texture in the margin of deformed orthoclase crystals, recrystallization of biotite laths and myrmekite formation around K-feldspar porphyroclass core are evidence of high temperature (over 550oC) deformation at presence of some melts. Above evidence show that Lakhshak granodiorite mylonites was deformed in 585-730oC and at present of some melts.