Abstract Climate change will affect both the mean state and seasonality of marine physical and biogeochemical properties, with important implications for the oceanic sink of atmospheric CO 2 . Here, we investigate the seasonal cycle of the air‐sea exchange of CO 2 and pCO 2, sw (surface seawater pCO 2 ) and their long term changes using the CMIP6 submission of the NASA‐GISS modelE (GISS‐E2.1‐G). In comparison to the CMIP5 submission (GISS‐E2‐R), we find that on the global scale, the seasonal cycles of the CO 2 flux and NPP have improved, while the seasonal cycles of dissolved inorganic carbon (DIC), alkalinity, and macronutrients have deteriorated. Moreover, for all ocean biogeochemistry fields, changes in skill between E2.1‐G and E2‐R display large regional variability. For E2.1‐G, we find similar modeled and observed CO 2 flux seasonal cycles in the subtropical gyres, where seasonal anomalies of pCO 2, sw and the flux are temperature‐driven, and the Southern Ocean, where anomalies are DIC‐driven. Biases in these seasonal cycles are largest in the subpolar and equatorial regions, driven by a combination of biases in temperature, DIC, alkalinity, and wind speed. When comparing the historical simulation to a simulation with an idealized increase in atmospheric pCO 2 , we find that the seasonal amplitudes of the CO 2 flux and pCO 2, sw generally increase. These changes are produced by increases in the sensitivity of pCO 2, sw to its respective drivers. These findings are consistent with the notion that the seasonality of pCO 2, sw is expected to increase due to the increase of atmospheric pCO 2 , with changes in the seasonality of temperature, DIC, and alkalinity having secondary influences.
We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40 year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000 year) time scale of deep ocean ventilation affects the time scale for natural CO2 change and thus the time scale for paleo global climate, ice sheet, and sea level changes, but this paleo millennial time scale should not be misinterpreted as the time scale for ice sheet response to a rapid large human-made climate forcing.
Abstract. While paleoclimate simulations have been a priority for Earth system modelers over the past three decades, little attention has been paid to the period between the mid-Holocene and the Last Millennium, although this is an important period for the emergence of complex societies. Here, we consider the climate of 2500 BP (550 BCE), a period when compared to late preindustrial time, greenhouse gas concentrations were slightly lower, and orbital forcing led to a stronger seasonal cycle in high latitude insolation. To capture the influence of land cover on climate, we asynchronously coupled the NASA GISS ModelE Earth system model with the LPJ-LMfire dynamic global vegetation model. We simulated global climate and assessed our results in the context of independent paleoclimate reconstructions. We also explored a set of combinations of model performance parameters (bias and variability) and demonstrated their importance for the asynchronous coupling framework. The coupled model system shows substantial vegetation albedo feedback to climate. In the absence of a bias correction, while driving LPJ-LMfire in the coupling process, ModelE drifts towards colder conditions in the high latitudes of the Northern Hemisphere in response to land cover simulated by LPJ-LMfire. A regional precipitation response is also prominent in the various combinations of the coupled model system, with a substantial intensification of the Summer Indian Monsoon and a drying pattern over Europe. Evaluation of the simulated climate against reconstructions of temperature from multiple proxies and the isotopic composition of precipitation (δ18Op) from speleothems demonstrated the skill of ModelE in simulating past climate. A regional analysis of the simulated vegetation-climate response further confirmed the validity of this approach. The coupled model system is sensitive to the representation of shrubs and this land cover type requires particular attention as a potentially important driver of climate in regions where shrubs are abundant. Our results further demonstrate the importance of bias correction in coupled paleoclimate simulations.
Abstract. We investigate the issue of "dangerous human-made interference with climate" using simulations with GISS modelE driven by measured or estimated forcings for 1880–2003 and extended to 2100 for IPCC greenhouse gas scenarios as well as the "alternative" scenario of Hansen and Sato (2004). Identification of "dangerous" effects is partly subjective, but we find evidence that added global warming of more than 1°C above the level in 2000 has effects that may be highly disruptive. The alternative scenario, with peak added forcing ~1.5 W/m2 in 2100, keeps further global warming under 1°C if climate sensitivity is ~3°C or less for doubled CO2. The alternative scenario keeps mean regional seasonal warming within 2σ (standard deviations) of 20th century variability, but other scenarios yield regional changes of 5–10σ, i.e. mean conditions outside the range of local experience. We conclude that a CO2 level exceeding about 450 ppm is "dangerous", but reduction of non-CO2 forcings can provide modest relief on the CO2 constraint. We discuss three specific sub-global topics: Arctic climate change, tropical storm intensification, and ice sheet stability. We suggest that Arctic climate change has been driven as much by pollutants (O3, its precursor CH4, and soot) as by CO2, offering hope that dual efforts to reduce pollutants and slow CO2 growth could minimize Arctic change. Simulated recent ocean warming in the region of Atlantic hurricane formation is comparable to observations, suggesting that greenhouse gases (GHGs) may have contributed to a trend toward greater hurricane intensities. Increasing GHGs cause significant warming in our model in submarine regions of ice shelves and shallow methane hydrates, raising concern about the potential for accelerating sea level rise and future positive feedback from methane release. Growth of non-CO2 forcings has slowed in recent years, but CO2 emissions are now surging well above the alternative scenario. Prompt actions to slow CO2 emissions and decrease non-CO2 forcings are required to achieve the low forcing of the alternative scenario.
Our climate model, driven mainly by increasing human-made greenhouse gases and aerosols, among other forcings, calculates that Earth is now absorbing 0.85 +/- 0.15 watts per square meter more energy from the Sun than it is emitting to space. This imbalance is confirmed by precise measurements of increasing ocean heat content over the past 10 years. Implications include (i) the expectation of additional global warming of about 0.6 degrees C without further change of atmospheric composition; (ii) the confirmation of the climate system's lag in responding to forcings, implying the need for anticipatory actions to avoid any specified level of climate change; and (iii) the likelihood of acceleration of ice sheet disintegration and sea level rise.
The amount of solar irradiance reaching the surface is a key parameter in the hydrological and energy cycles of the Earth's climate. We analyze 20th Century simulations using nine state‐of‐the‐art climate models and show that all models estimate a global annual mean reduction in downward surface solar radiation of 1–4 W/m 2 at the same time that the globe warms by 0.4–0.7°C. In single forcing simulations using the GISS‐ER model, this “global dimming” signal is shown to be predominantly related to aerosol effects. In the global mean sense the surface adjusts to changes in downward solar flux instantaneously by reducing the upward fluxes of longwave, latent and sensible heat. Adding increased greenhouse gas forcing traps outgoing longwave radiation in the atmosphere and surface which results in net heating (although reduced) that is consistent with global warming over the 20th Century. Over the 1984–2000 period, individual model simulations show widely disparate results, mostly related to cloud changes associated with tropical Pacific variations, similar to the changes inferred from the satellite data analysis. This suggests that this time period is not sufficient to determine longer term trends.
A 200-member ensemble has been created to quantify uncertainty in the GISTEMP history of surface temperature anomalies.• This ensemble enables more accurate statistical analyses of key global change metrics.• The median ensemble estimate agrees well with the operational GISTEMP analysis and other global products
We compare the United States and global surface air temperature changes of the past century using the current Goddard Institute for Space Studies (GISS) analysis and the U.S. Historical Climatology Network (USHCN) record [ Karl et al. , 1990]. Changes in the GISS analysis subsequent to the documentation by Hansen et al . [1999] are as follows: (1) incorporation of corrections for time‐of‐observation bias and station history adjustments in the United States based on Easterling et al . [1996a], (2) reclassification of rural, small‐town, and urban stations in the United States, southern Canada, and northern Mexico based on satellite measurements of night light intensity [ Imhoff et al. , 1997], and (3) a more flexible urban adjustment than that employed by Hansen et al . [1999], including reliance on only unlit stations in the United States and rural stations in the rest of the world for determining long‐term trends. We find evidence of local human effects (“urban warming”) even in suburban and small‐town surface air temperature records, but the effect is modest in magnitude and conceivably could be an artifact of inhomogeneities in the station records. We suggest further studies, including more complete satellite night light analyses, which may clarify the potential urban effect. There are inherent uncertainties in the long‐term temperature change at least of the order of 0.1°C for both the U.S. mean and the global mean. Nevertheless, it is clear that the post‐1930s cooling was much larger in the United States than in the global mean. The U.S. mean temperature has now reached a level comparable to that of the 1930s, while the global temperature is now far above the levels earlier in the century. The successive periods of global warming (1900–1940), cooling (1940–1965), and warming (1965–2000) in the 20th century show distinctive patterns of temperature change suggestive of roles for both climate forcings and dynamical variability. The U.S. was warm in 2000 but cooler than the warmest years in the 1930s and 1990s. Global temperature was moderately high in 2000 despite a lingering La Niña in the Pacific Ocean.