The clustering properties of local, S_{1.4 GHz} > 1 mJy, radio sources are investigated for a sample of 820 objects drawn from the joint use of the FIRST and 2dF Galaxy Redshift surveys. To this aim, we present 271 new bj < 19.45 spectroscopic counterparts of FIRST radio sources to be added to those already introduced in Magliocchetti et al. (2002). The two-point correlation function for the local radio population is found to be entirely consistent with estimates obtained for the whole sample of 2dFGRS galaxies. We estimate the parameters of the real-space correlation function xi(r)=(r/r_0)^{-\gamma}, r_0=6.7^{+0.9}_{-1.1} Mpc and \gamma=1.6\pm 0.1, where h=0.7 is assumed. Different results are instead obtained if we only consider sources that present signatures of AGN activity in their spectra. These objects are shown to be very strongly correlated, with r_0=10.9^{+1.0}_{-1.2} Mpc and \gamma=2\pm 0.1, a steeper slope than has been claimed in other recent works. No difference is found in the clustering properties of radio-AGNs of different radio luminosity. These results show that AGN-fuelled sources reside in dark matter halos more massive than \sim 10^{13.4} M_{\sun}},higher the corresponding figure for radio-quiet QSOs. This value can be converted into a minimum black hole mass associated with radio-loud, AGN-fuelled objects of M_{BH}^{min}\sim 10^9 M_{\sun}. The above results then suggest -at least for relatively faint radio objects -the existence of a threshold black hole mass associated with the onset of significant radio activity such as that of radio-loud AGNs; however, once the activity is triggered, there appears to be no evidence for a connection between black hole mass and level of radio output. (abridged)
It is well known that the clustering of galaxies depends on galaxy type. Such relative bias complicates the inference of cosmological parameters from galaxy redshift surveys, and is a challenge to theories of galaxy formation and evolution. In this paper we perform a joint counts-in-cells analysis on galaxies in the 2dF Galaxy Redshift Survey, classified by both colour and spectral type, η, as early- or late-type galaxies. We fit three different models of relative bias to the joint probability distribution of the cell counts, assuming Poisson sampling of the galaxy density field. We investigate the non-linearity and stochasticity of the relative bias, with cubic cells of side 10 =L = 45 Mpc (h = 0.7). Exact linear bias is ruled out with high significance on all scales. Power-law bias gives a better fit, but likelihood ratios prefer a bivariate lognormal distribution, with a non-zero 'stochasticity', i.e. scatter that may result from physical effects on galaxy formation other than those from the local density field. Using this model, we measure a correlation coefficient in log-density space (rLN) of 0.958 for cells of length L = 10 Mpc, increasing to 0.970 by L = 45 Mpc. This corresponds to a stochasticity of 0.44 ± 0.02 and 0.27 ± 0.05, respectively. For smaller cells, the Poisson-sampled lognormal distribution presents an increasingly poor fit to the data, especially with regard to the fraction of completely empty cells. We compare these trends with the predictions of semi-analytic galaxy formation models: these match the data well in terms of the overall level of stochasticity, variation with scale and the fraction of empty cells.
We calculate the contribution to Balmer line indices from far ultraviolet component sources. We find that this is significant, and may lead to identification of spurious age differences of the order of a total span of ∼6 Gyr or ∼15 per cent size bursts observed a few Gyr after star formation stops. We suggest that claims for intermediate-age populations in early-type galaxies may need to be reconsidered in the light of this new evidence.
We combine the quasi-stellar object (QSO) samples from the 2dF QSO Redshift Survey (2QZ) and the 2dF-Sloan Digital Sky Survey luminous red galaxy (LRG) and QSO Survey (2dF-SDSS LRG and QSO, hereafter 2SLAQ) in order to investigate the clustering of z∼ 1.5 QSOs and measure the correlation function (ξ). The clustering signal in redshift-space and projected along the sky direction is similar to that previously obtained from the 2QZ sample alone. By fitting functional forms for ξ(σ, π), the correlation function measured along and across the line of sight, we find, as expected, that β, the dynamical infall parameter and Ω0m, the cosmological density parameter, are degenerate. However, this degeneracy can be lifted by using linear theory predictions under different cosmological scenarios. Using the combination of the 2QZ and 2SLAQ QSO data, we obtain: βQSO(z= 1.5) = 0.60+0.14−0.11, Ω0m= 0.25+0.09−0.07 which imply a value for the QSO bias, b(z= 1.4) = 1.5 ± 0.2.
Multimessenger searches for binary neutron star (BNS) and neutron star-black hole (NSBH) mergers are currently one of the most exciting areas of astronomy. The search for joint electromagnetic and neutrino counterparts to gravitational wave (GW)s has resumed with ALIGO’s, AdVirgo’s and KAGRA’s fourth observing run (O4). To support this effort, public semiautomated data products are sent in near real-time and include localization and source properties to guide complementary observations. In preparation for O4, we have conducted a study using a simulated population of compact binaries and a mock data challenge (MDC) in the form of a real-time replay to optimize and profile the software infrastructure and scientific deliverables. End-toend performance was tested, including data ingestion, running online search pipelines, performing annotations, and issuing alerts to the astrophysics community. We present an overview of the low-latency infrastructure and the performance of the data products that are now being released during O4 based on the MDC. We report the expected median latency for the preliminary alert of full bandwidth searches (29.5 s) and show consistency and accuracy of released data products using the MDC. We report the expected median latency for triggers from early warning searches (−3.1 s), which are new in O4 and target neutron star mergers during inspiral phase. This paper provides a performance overview for LIGO-Virgo-KAGRA (LVK) low-latency alert infrastructure and data products using theMDCand serves as a useful reference for the interpretation of O4 detections.
We present a detailed investigation into the recent star formation histories of 5,697 Luminous Red Galaxies (LRGs) based on the Hdelta (4101A) and [OII] (3727A) lines. LRGs are luminous (L>3L*), galaxies which have been selected to have photometric properties consistent with an old, passively evolving stellar population. For this study we utilise LRGs from the recently completed 2dF-SDSS LRG and QSO survey (2SLAQ). Equivalent widths of the Hdelta and [OII] lines are measured and used to define three spectral types, those with only strong Hdelta absorption (k+a), those with strong [OII] in emission (em) and those with both (em+a). All other LRGs are considered to have passive star formation histories. The vast majority of LRGs are found to be passive (~80 per cent), however significant numbers of k+a (2.7 per cent), em+a (1.2 per cent) and em LRGs (8.6 per cent) are identified. An investigation into the redshift dependence of the fractions is also performed. A sample of SDSS MAIN galaxies with colours and luminosities consistent with the 2SLAQ LRGs is selected to provide a low redshift comparison. While the em and em+a fractions are consistent with the low redshift SDSS sample, the fraction of k+a LRGs is found to increase significantly with redshift. This result is interpreted as an indication of an increasing amount of recent star formation activity in LRGs with redshift. By considering the expected life time of the k+a phase, the number of LRGs which will undergo a k+a phase can be estimated. A crude comparison of this estimate with the predictions from semi-analytic models of galaxy formation shows that the predicted level of k+a and em+a activity is not sufficient to reconcile the predicted mass growth for massive early-types in a hierarchical merging scenario.
We derive the fraction of blue galaxies in a sample of clusters at z < 0.11 and the general field at the same redshift. The value of the blue fraction is observed to depend on the luminosity limit adopted, cluster-centric radius and, more generally, local galaxy density, but it does not depend on cluster properties. Changes in the blue fraction are due to variations in the relative proportions of red and blue galaxies but the star formation rate for these two galaxy groups remains unchanged. Our results are most consistent with a model where the star formation rate declines rapidly and the blue galaxies tend to be dwarfs and do not favour mechanisms where the Butcher-Oemler effect is caused by processes specific to the cluster environment.
We combine the Two Micron All Sky Survey (2MASS) Extended Source Catalogue and the 2dF Galaxy Redshift Survey to produce an infrared selected galaxy catalogue with 17 173 measured redshifts. We use this extensive data set to estimate the galaxy luminosity functions in the J- and KS-bands. The luminosity functions are fairly well fitted by Schechter functions with parameters MJ*−5 log h = −22.36±0.02, αJ = −0.93±0.04, ΦJ* = 0.0104±0.0016 h3 Mpc−3 in the J-band and MKS*−5 log h = −23.44±0.03, αKS = −0.96±0.05, ΦKS* = 0.0108±0.0016 h3 Mpc−3 in the KS-band (2MASS Kron magnitudes). These parameters are derived assuming a cosmological model with Ω0 = 0.3 and Λ0 = 0.7. With data sets of this size, systematic rather than random errors are the dominant source of uncertainty in the determination of the luminosity function. We carry out a careful investigation of possible systematic effects in our data. The surface brightness distribution of the sample shows no evidence that significant numbers of low surface brightness or compact galaxies are missed by the survey. We estimate the present-day distributions of bJ — KS and J — KS colours as a function of the absolute magnitude and use models of the galaxy stellar populations, constrained by the observed optical and infrared colours, to infer the galaxy stellar mass function. Integrated over all galaxy masses, this yields a total mass fraction in stars (in units of the critical mass density) of Ωstarsh = (1.6±0.24) × 10−3 for a Kennicutt initial mass function (IMF) and Ωstarsh = (2.9±0.43) × 10−3 for a Salpeter IMF. These values are consistent with those inferred from observational estimates of the total star formation history of the Universe provided that dust extinction corrections are modest.
We compute the bispectrum of the 2dF Galaxy Redshift Survey (2dFGRS) and use it to measure the bias parameter of the galaxies. This parameter quantifies the strength of clustering of the galaxies relative to the mass in the Universe. By analysing 80 × 106 triangle configurations in the wavenumber range 0.1 < k < 0.5 h Mpc−1 (i.e. on scales roughly between 5 and 30 h−1 Mpc) we find that the linear bias parameter is consistent with unity: b1= 1.04 ± 0.11, and the quadratic (non-linear) bias is consistent with zero: b2=−0.054 ± 0.08. Thus, at least on large scales, optically selected galaxies do indeed trace the underlying mass distribution. The bias parameter can be combined with the 2dFGRS measurement of the redshift distortion parameter β≃Ωm0.6/b1, to yield Ωm= 0.27 ± 0.06 for the matter density of the Universe, a result that is determined entirely from this survey, independent of other data sets. Our measurement of the matter density of the Universe should be interpreted as Ωm at the effective redshift of the survey (z= 0.17).
We present a power-spectrum analysis of the final 2dF Galaxy Redshift Survey (2dFGRS), employing a direct Fourier method. The sample used comprises 221 414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection, improving on previous treatments in a number of respects. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered. We discuss in detail the possible differences between the galaxy and mass power spectra, and treat these using simulations, analytic models and a hybrid empirical approach. Based on these investigations, we are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the 'baryon oscillations' that are predicted in cold dark matter (CDM) models. Fitting to a CDM model, assuming a primordial ns= 1 spectrum, h= 0.72 and negligible neutrino mass, the preferred parameters are Ωmh= 0.168 ± 0.016 and a baryon fraction Ωb/Ωm= 0.185 ± 0.046 (1σ errors). The value of Ωmh is 1σ lower than the 0.20 ± 0.03 in our 2001 analysis of the partially complete 2dFGRS. This shift is largely due to the signal from the newly sampled regions of space, rather than the refinements in the treatment of observational selection. This analysis therefore implies a density significantly below the standard Ωm= 0.3: in combination with cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe (WMAP), we infer Ωm= 0.231 ± 0.021.