Abstract Land surface models (LSMs) used in climate modeling include detailed above-ground biophysics but usually lack a good representation of runoff. Both processes are closely linked through soil moisture. Soil moisture however has a high spatial variability that is unresolved at climate model grid scales. Physically based vertical and horizontal aggregation methods exist to account for this scaling problem. Effects of scaling and aggregation have been evaluated in this study by performing catchment-scale LSM simulations for the Rhône catchment. It is found that evapotranspiration is not sensitive to soil moisture over the Rhône but it largely controls total runoff as a residual of the terrestrial water balance. Runoff magnitude is better simulated when the vertical soil moisture fluxes are resolved at a finer vertical resolution. The use of subgrid-scale topography significantly improves both the timing of runoff on the daily time scale (response to rainfall events) and the magnitude of summer baseflow (from seasonal groundwater recharge). Explicitly accounting for soil moisture as a subgrid-scale process in LSMs allows one to better resolve the seasonal course of the terrestrial water storage and makes runoff insensitive to the used grid scale. However, scale dependency of runoff to above-ground hydrology cannot be ignored: snowmelt runoff from the Alpine part of the Rhône is sensitive to the spatial resolution of the snow scheme, and autumnal runoff from the Mediterranean part of the Rhône is sensitive to the spatial resolution of precipitation.
<p>While it is well accepted that tropical cyclones (TCs) derive their energy from surface enthalpy fluxes over the ocean, there is still little understanding of the precise causes and effects by which the latter ends up as TC vortex kinetic energy. For example, Potential Intensity (PI) theory, which has been so far the main framework for predicting TC intensities, assumes a balance between the Carnot power input and the kinetic energy dissipated by surface friction, but says nothing of the detailed physical processes linking the two. A similar criticism pertains to the WISHE (Wind Induced Surface Heat Exchange) theory. To achieve a causal theory of TC intensification, the main difficulty is in linking the power input to kinetic energy production, rather than kinetic energy dissipation. Because kinetic energy is produced at the expense of available potential energy (APE), APE theory is arguably the most promising candidate framework for achieving a causal theory of TC intensification. However, in its current form, the usefulness of APE theory appears to be limited in a number of ways because of its reliance on a notional reference state of rest. First, APE production associated with standard reference states (i.e., horizontally averaged density field, density field of initial sounding, adiabatically sorted states, ...) is usually found to systematically overestimate the kinetic energy actually produced in ideal TC simulations, similarly as the Carnot theory of heat engines; moreover, the standard APE is only connected to vertical buoyancy forces, but says nothing of the radial forces required to drive the secondary circulation. To address these shortcomings, this work presents a new theory of available energy (AE) that is based on the use of an axisymmetric vortex reference state in gradient wind balance. This theory possesses the following advantages over previous frameworks:</p><p>&#160;</p><ul><li>The available energy (AE) thus constructed possesses both a mechanical and thermodynamic component. The thermodynamic component is analogous to the well-known Slantwise Convective Available Potential Energy (SCAPE), whereas the mechanical component is proportional to the anomalous azimuthal kinetic energy;</li> <li>The rate of AE production by surface enthalpy fluxes is found to be a very accurate predictor of the amount of potential energy actually converted into kinetic energy in idealised TC simulations based on the Rotunno and Emanuel (1986) axisymmetric model, although a few exceptions are found for cold SSTs;</li> <li>In addition to the expected thermodynamic efficiencies, the production term for AE also involves mechanical efficiencies predicting the fraction of the sinks/sources of angular momentum creating/destroying AE;</li> <li>The AE is related to a generalised buoyancy/inertial force that has both vertical and horizontal components; at low levels, such a generalised force has radially inward and vertically upward components, as required to drive the expected secondary circulation.</li> </ul><p>The new theory, therefore, appears to possess all the ingredients to form the basis for a causal theory of TC intensification.</p>
Abstract Ensemble runs of high‐resolution (~10 km; N1280) global climate simulations (2005–2010) with the Met Office HadGEM3 model are analysed over large urban areas in the south‐east UK (London) and south‐east China (Shanghai, Hangzhou, Nanjing region). With a focus on urban areas, we compare meteorological observations to study the response of modelled surface heat fluxes and screen‐level temperatures to urbanization. HadGEM3 has a simple urban slab scheme with prescribed, globally fixed bulk parameters. Misrepresenting the magnitude or the extent of urban land cover can result in land‐surface model bias. As urban land‐cover fractions are severely under‐estimated in China, this impacts surface heat‐flux partitioning and quintessential features, such as the urban heat island. Combined with the neglect of anthropogenic heat emissions, this can result in misrepresentation of heat‐wave intensities (or cold spells) in cities. The model performance in urban areas could be improved if bulk parameters are modelled instead of prescribed, but this necessitates the availability of local morphology data on a global level. Improving land‐cover information and providing more flexible ways to account for differences between cities (e.g., anthropogenic emission; morphology) is essential for realistic future projections of city climates, especially if model output is intended for urban climate services.
Abstract The U.K. on Partnership for Advanced Computing in Europe (PRACE) Weather-Resolving Simulations of Climate for Global Environmental Risk (UPSCALE) project, using PRACE resources, constructed and ran an ensemble of atmosphere-only global climate model simulations, using the Met Office Unified Model Global Atmosphere 3 (GA3) configuration. Each simulation is 27 years in length for both the present climate and an end-of-century future climate, at resolutions of N96 (130 km), N216 (60 km), and N512 (25 km), in order to study the impact of model resolution on high-impact climate features such as tropical cyclones. Increased model resolution is found to improve the simulated frequency of explicitly tracked tropical cyclones, and correlations of interannual variability in the North Atlantic and northwestern Pacific lie between 0.6 and 0.75. Improvements in the deficit of genesis in the eastern North Atlantic as resolution increases appear to be related to the representation of African easterly waves and the African easterly jet. However, the intensity of the modeled tropical cyclones as measured by 10-m wind speed remains weak, and there is no indication of convergence over this range of resolutions. In the future climate ensemble, there is a reduction of 50% in the frequency of Southern Hemisphere tropical cyclones, whereas in the Northern Hemisphere there is a reduction in the North Atlantic and a shift in the Pacific with peak intensities becoming more common in the central Pacific. There is also a change in tropical cyclone intensities, with the future climate having fewer weak storms and proportionally more strong storms.
Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. Consequently, the role of enhanced horizontal resolution in improved process representation in all components of the climate system continues to be of great interest. Recent simulations suggest both the possibility of significant changes in large-scale aspects of the ocean and atmospheric circulations and the regional responses to climate change, as well as improvements in representations of small-scale processes and extremes, when resolution is enhanced. The first phase of HighResMIP (HighResMIP1) was successful in producing a baseline multi-model assessment of global simulations with model grid spacings of 25–50 km in the atmosphere and 10–25 km in the ocean, a significant increase when compared to models with standard resolutions of order 1-degree typically used as part of the Coupled Model Intercomparison Project (CMIP) experiments. In addition to over 250 peer-reviewed manuscripts using the published HighResMIP1 datasets, the results were widely cited in the Intergovernmental Panel on Climate Change report and were the basis for a variety of derived datasets, including tracked cyclones (both tropical and extratropical), river discharge, storm surge, and others that were used for impact studies. There were also suggestions from the few ocean eddy-rich coupled simulations that aspects of climate variability and change might be significantly influenced by improved process representation in such models. The compromises that HighResMIP1 made should now be revisited, given the recent major advances in modelling and computing resources. Aspects that will be reconsidered include experimental design and simulation length, complexity, and resolution. In addition, larger ensemble sizes and a wider range of future scenarios would enhance the applicability of HighResMIP. Therefore, we propose an updated HighResMIP2 to improve and extend the previous work, to address new science questions, and to further advance our understanding of the role of horizontal resolution (and hence process representation) in state-of-the-art climate simulations. With further increases in high-performance computing resources and modelling advances along with the ability to take full advantage of these computational resources, an enhanced investigation of the drivers and consequences of variability and change in both large- and synoptic-scale weather and climate is now made possible. With the arrival of global cloud-resolving models (currently run for relatively short timescales), there is also an opportunity to improve links between such models and more traditional CMIP models, with HighResMIP providing a bridge to link understanding between these domains. HighResMIP also aims to link to other CMIP projects and international efforts such as the World Climate Research Program lighthouse activities and various Digital Twin initiatives, as well as having the potential to be used as training and validation data for the fast evolving Machine Learning climate models.
Abstract. We describe Global Atmosphere 6.0 and Global Land 6.0 (GA6.0/GL6.0): the latest science configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment) dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the model's physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe GA6.1/GL6.1, which includes a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global numerical weather prediction, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year.