This paper presents a synthetic aperture radar (SAR) simulator that is able to generate polarimetric SAR (POLSAR) and polarimetric inverse SAR data of complex targets. It solves the electromagnetic problem via high-frequency approximations, such as physical optics and the physical theory of diffraction, with notable computational efficiency. In principle, any orbital monostatic sensor working at any band, resolution, and operating mode can be modeled. To make simulations more realistic, the target's bearing and speed are considered, and for the particular case of vessels, even the translational and rotational movements induced by the sea state. All these capabilities make the simulator a powerful tool for supplying large amounts of data with precise scenario information and for testing future sensor configurations. In this paper, the usefulness of the simulator on vessel classification studies is assessed. Several simulated polarimetric images are presented to analyze the potentialities of coherent target decompositions for classifying complex geometries, thus basing an operational algorithm. The limitations highlighted by the results suggest that other approaches, like POLSAR interferometry, should be explored
Dihedral is a common structure in polarimetric SAR images and can be found on many man-made targets. Many researchers have proposed different dihedral models, but the accuracy of these models is limited. In this case, the feature extraction methods based on these models are also not effective enough, which affects the subsequent applications such as target detection. Therefore, it is necessary to propose a new and accurate scattering model, which can be applied to dihedral with different orientation angles for feature extraction and target detection. In this paper, a general scattering model called modified oriented dihedral scattering model (MODM) is proposed based on physical optics (PO) and geometric optics (GO) of high-frequency approximation techniques. By analyzing the propagation and reflection of electromagnetic wave, MODM can accurately describe the scattering characteristic of dihedral for all observation conditions. In order to apply the model to real PolSAR images, MODM is introduced into a new feature extraction method, which is called five-scattering component polarimetric decomposition method (MODM-5SD). Feature extraction and target detection experiments of buildings with various oriented dihedral structures are performed using different data sets, which show that dihedral scattering components from oriented dihedral structures can be more effectively extracted by MODM-5SD. In addition, more buildings with oriented dihedral structures can be detected with the features from MODM-5SD. The experimental results show that MODM can more accurately describe the scattering characteristic of dihedral, which can be further applied for scattering characterization and feature extraction of targets with typical dihedral structures.
The rationale of polarimetric optimization techniques is to enhance the phase quality of the interferograms by combining adequately the different polarization channels available to produce an improved one. Different approaches have been proposed for polarimetric persistent scatterer interferometry (PolPSI). They range from the simple and computationally efficient BEST, where, for each pixel, the polarimetric channel with the best response in terms of phase quality is selected, to those with high-computational burden like the equal scattering mechanism (ESM) and the suboptimum scattering mechanism (SOM). BEST is fast and simple, but it does not fully exploit the potentials of polarimetry. On the other side, ESM explores all the space of solutions and finds the optimal one but with a very high-computational burden. A new PolPSI algorithm, named coherency matrix decomposition-based PolPSI (CMD-PolPSI), is proposed to achieve a compromise between phase optimization and computational cost. Its core idea is utilizing the polarimetric synthetic aperture radar (PolSAR) coherency matrix decomposition to determine the optimal polarization channel for each pixel. Three different PolSAR image sets of both full- (Barcelona) and dual-polarization (Murcia and Mexico City) are used to evaluate the performance of CMD-PolPSI. The results show that CMD-PolPSI presents better optimization results than the BEST method by using either $D_{\mathrm{ A}}$ or temporal mean coherence as phase quality metrics. Compared with the ESM algorithm, CMD-PolPSI is 255 times faster but its performance is not optimal. The influence of the number of available polarization channels and pixel's resolutions on the CMD-PolPSI performance is also discussed.
Land subsidence associated with overexploitation of aquifers is a hazard that commonly affects large areas worldwide. The Lorca area, located in southeast Spain, has undergone one of the highest subsidence rates in Europe as a direct consequence of long-term aquifer exploitation. Previous studies carried out on the region assumed that the ground deformation retrieved from satellite radar interferometry corresponds only to vertical displacement. Here we report, for the first time, the two- and three-dimensional displacement field over the study area using synthetic aperture radar (SAR) data from Sentinel-1A images and Global Navigation Satellite System (GNSS) observations. By modeling this displacement, we provide new insights on the spatial and temporal evolution of the subsidence processes and on the main governing mechanisms. Additionally, we also demonstrate the importance of knowing both the vertical and horizontal components of the displacement to properly characterize similar hazards. Based on these results, we propose some general guidelines for the sustainable management and monitoring of land subsidence related to anthropogenic activities.
Prior to the application of any persistent scatterer interferometry (PSI) technique for the monitoring of terrain displacement phenomena, an adequate pixel selection must be carried out in order to prevent the inclusion of noisy pixels in the processing. The rationale is to detect the so-called persistent scatterers, which are characterized by preserving their phase quality along the multi-temporal set of synthetic aperture radar (SAR) images available. Two criteria are mainly available for the estimation of pixels’ phase quality, i.e., the coherence stability and the amplitude dispersion or permanent scatterers (PS) approach. The coherence stability method allows an accurate estimation of the phase statistics, even when a reduced number of SAR acquisitions is available. Unfortunately, it requires the multi-looking of data during the coherence estimation, leading to a spatial resolution loss in the final results. In contrast, the PS approach works at full-resolution, but it demands a larger number of SAR images to be reliable, typically more than 20. There is hence a clear limitation when a full-resolution PSI processing is to be carried out and the number of acquisitions available is small. In this context, a novel pixel selection method based on exploiting the spectral properties of point-like scatterers, referred to as temporal sublook coherence (TSC), has been recently proposed. This paper seeks to demonstrate the advantages of employing PSI techniques by means of TSC on both orbital and ground-based SAR (GB-SAR) data when the number of images available is small (10 images in the work presented). The displacement maps retrieved through the proposed technique are compared, in terms of pixel density and phase quality, with traditional criteria. Two X-band datasets composed of 10 sliding spotlight TerraSAR-X images and 10 GB-SAR images, respectively, over the landslide of El Forn de Canillo (Andorran Pyrenees), are employed for this study. For both datasets, the TSC technique has showed an excellent performance compared with traditional techniques, achieving up to a four-fold increase in the number of persistent scatters detected, compared with the coherence stability approach, and a similar density compared with the PS approach, but free of outliers.