Abstract The dynamics of suspended particulate matter (SPM) and SPM‐associated biological and physicochemical processes in a river vary under dry and wet weather conditions and hydraulic structures, which moves a free‐flowing river to a semi‐lacustrine environment. This study investigated the response of SPM dynamics and riverbed morphodynamics to climate and anthropogenic stressors based on in‐situ observations and biogeochemical analyses of river water and riverbed sediment. The biochemical analyses and flocculation tests demonstrate abundant biopolymers and high flocculation potential of the river water during the pre‐flood period with algal bloom. This might promote SPM deposition and high‐concentration sediment layer (HCSL) formation on the riverbed. The high fractions of clay minerals and organic carbon in the riverbed sediment indicate the deposition of organic‐rich biomineral flocs. Vertical turbidity profiles with “long tails” of high turbidity near the riverbed also confirmed SPM deposition and HCSL formation. However, the highly turbulent flow conditions during the post‐flood period disturbed the tails of high turbidity and homogenized the vertical profiles of turbidity, temperature, and dissolved oxygen. Additionally, terrestrial humic substances were discharged from the watershed during this period, increasing the deflocculation and stabilization of SPM but decreasing deposition on the riverbed, thereby reducing the fractions of clay minerals and organic carbon in the sediment. This study demonstrated the interaction mechanism of SPM dynamics and riverbed morphodynamics with hydrological and biogeochemical processes in an impounded river under dry and wet weather conditions. The findings provide insights into water resource management to deal with climate change and anthropogenic stressors.
Wastewater sludge is used as an alternative fuel due to its high organic content and calorific value. However, influent characteristics and operational practices of wastewater treatment plants (WWTPs) can increase the sulfur content of sludge, devaluing it as a fuel. Thus, we investigated the biochemical mechanisms that elevate the sulfur content of sludge in a full-scale industrial WWTP receiving wastewater of the textile dyeing industry and a domestic WWTP by monitoring the sulfate, sulfur, and iron contents and the biochemical transformation of sulfate to sulfur in the wastewater and sludge treatment streams. A batch sulfate reduction rate test and microbial 16S rRNA and dsrB gene sequencing analyses were applied to assess the potential and activity of sulfate-reducing bacteria and their effect on sulfur deposition. This study indicated that the primary clarifier and anaerobic digester prominently reduced sulfate concentration through biochemical sulfate reduction and iron–sulfur complexation under anaerobic conditions, from 1247 mg/L in the influent to 6.2~59.8 mg/L in the industrial WWTP and from 46.7 mg/L to 0~0.8 mg/L in the domestic WWTPs. The anaerobic sludge, adapted in the high sulfate concentration of the industrial WWTP, exhibited a two times higher specific sulfate reduction rate (0.13 mg SO42−/gVSS/h) and sulfur content (3.14% DS) than the domestic WWTP sludge. Gene sequencing analysis of the population structure of common microbes and sulfate-reducing bacteria indicated the diversity of microorganisms involved in biochemical sulfate reduction in the sulfur cycle, supporting the data revealed by chemical analysis and batch tests.