The spatial distribution of clay minerals and authigenic-clay-coated sand grains in ancient and deeply buried petroleum reservoirs, which can enhance or degrade reservoir quality, is poorly understood. Authigenic clay coats are reported to originate from the thermally driven recrystallization of detrital clay coats or through in situ growth from the authigenic alteration of precursor and early-diagenetic minerals during burial diagenesis. To help predict the spatial distribution of authigenic clay coats and clay minerals in estuarine sandstones, this study provides the first modern-analogue study, using the Ravenglass Estuary, UK, which integrates the distribution patterns of lithofacies, Fe-sulfide, and precursor detrital-clay-coats and clay-minerals. X-ray-diffraction-determined mineralogy and the extent of detrital clay-coat coverage of sediment in twenty-three one-meter cores was established, at an unprecedented high resolution. The output from this study shows that detrital clay mineral distribution patterns are controlled principally by the physical sorting of clay minerals by grain size. Chlorite is most abundant in coarser-grained sediment (e.g., low-amplitude dunes), whereas illite is most abundant in finer-grained sub-environments (e.g., mud flats). Kaolinite abundance is relatively homogeneous, whereas smectite abundance is negligible in the Ravenglass Estuary. This study has shown that distribution patterns of detrital-clay-coats and clay-minerals are controlled by processes active during deposition and bio-sediment interaction in the top few millimeters in the primary deposition environment. In the Ravenglass Estuary, distribution patterns of detrital-clay-coats and clay-minerals have not been overprinted by the postdepositional processes of sediment bioturbation or mechanical infiltration. Optimum detrital-clay-coat coverage and clay mineralogy, which might serve as a precursor to porosity-preserving authigenic clay coats in deeply buried sandstone reservoirs, is likely to occur in low-amplitude dunes in the inner estuary and central basin. Furthermore, bioturbation in low-amplitude dunes has reduced Fe-sulfide growth due to oxidization, meaning that iron remains available for the formation of authigenic Fe-bearing clay minerals, such as chlorite, that can lead to enhanced reservoir quality in deeply buried sandstones.
A major limiting factor in efforts to develop a predictive capability for the distribution of clay-coat-derived positive reservoir quality anomalies, in deeply-buried sandstones, has been the lack of a reliable and user-independent method to quantify the extent of clay-coat coverage. Clay minerals attached to grain surfaces as coats (rims) have been reported to inhibit quartz cementation during prolonged burial heating and so preserve reservoir quality deep in sedimentary basins. The completeness of clay-coat grain coverage is the principal factor that controls the effectiveness of quartz cement inhibition and the preservation of elevated primary porosity in deeply buried sandstones. Being able to quantify extent of clay-coat grain coverage is thus of paramount importance in facilitating predictive models for the distribution of clay-coat-derived enhanced reservoir quality.
Chlorite, an Fe- and Mg-rich aluminosilicate clay, may be either detrital or authigenic in sandstones. Detrital chlorite includes mineral grains, components of lithic grain, matrix and detrital grain coats. Authigenic chlorite may be grain-coating, pore-filling or grain-replacing. Chlorite can be observed and quantified by a range of laboratory techniques including light optical and scanning electron microscopy and X-ray diffraction; the presence of chlorite in sandstone can be identified by the careful integration of signals from downhole logs. Grain-coating chlorite is the only type of chlorite that can help sandstone reservoir quality since it inhibits quartz cementation in deeply buried sandstones. Grain coats are up to about 10 μm thick and typically isopachous on all grain surfaces; they result from rapid indiscriminate nucleation at high levels of chlorite supersaturation in the pore waters and then growth of appropriately oriented nuclei as ultra-thin, roughly equant crystals. Chlorite can have many possible origins, but it is likely that grain-coating chlorite results from closed system diagenesis at the bed scale. Chlorite sources include transformation of detrital Fe-rich berthierine, transformation of Mg-rich smectite, reaction of kaolinite with sources of Fe and breakdown of volcanic grains. The specific origin of chlorite controls its composition, with chlorite in marine sandstones having a berthierine source and chlorite in continental sandstones having a smectite source. Incorporation of precursor clays required for chlorite growth can be achieved by a variety of processes; these most commonly occur in marginal marine environments possibly explaining why Fe-rich chlorite coats are most commonly found in marginal marine sandstones.
Primary depositional mineralogy has a major impact on sandstone reservoir quality. The spatial distribution of primary depositional mineralogy in sandstones is poorly-understood and consequently empirical models typically fail to accurately predict reservoir quality. To address this challenge, we have determined the spatial distribution of detrital minerals (quartz, feldspar, carbonates and clay minerals) in surface sediment throughout the Ravenglass Estuary, UK. We have produced, for the first time, high resolution maps of detrital mineral quantities over an area that is similar to many oil and gas reservoirs. Spatial mineralogy patterns (based on x-ray diffraction data) and statistical analyses revealed that estuarine sediment composition is primarily controlled by provenance, i.e. the character of bedrock and sediment drift in the source area. The distributions of quartz, feldspar, carbonates and clay minerals are primarily controlled by the grain size of specific minerals (e.g. rigid versus brittle grains) and estuarine hydrodynamics. The abundance of quartz, feldspar, carbonates and clay minerals is predictable as a function of depositional environment and critical grain-size thresholds. This study may be used, by analogy, to better predict the spatial distribution of sandstone composition, and thus reservoir quality in ancient and deeply-buried estuarine sandstones.
Abstract Chlorite is a key mineral in the control of reservoir quality in many siliciclastic rocks. In deeply buried reservoirs, chlorite coats on sand grains prevent the growth of quartz cements and lead to anomalously good reservoir quality. By contrast, an excess of chlorite – for example, in clay-rich siltstone and sandstone – leads to blocked pore throats and very low permeability. Determining which compositional type is present, how it occurs spatially, and quantifying the many and varied habits of chlorite that are of commercial importance remains a challenge. With the advent of automated techniques based on scanning electron microscopy (SEM), it is possible to provide instant phase identification and mapping of entire thin sections of rock. The resulting quantitative mineralogy and rock fabric data can be compared with well logs and core analysis data. We present here a completely novel Quantitative Evaluation of Minerals by SCANning electron microscopy (QEMSCAN®) SEM–energy-dispersive spectrometry (EDS) methodology to differentiate, quantify and image 11 different compositional types of chlorite based on Fe : Mg ratios using thin sections of rocks and grain mounts of cuttings or loose sediment. No other analytical technique, or combination of techniques, is capable of easily quantifying and imaging different compositional types of chlorite. Here we present examples of chlorite from seven different geological settings analysed using QEMSCAN® SEM–EDS. By illustrating the reliability of identification under automated analysis, and the ability to capture realistic textures in a fully digital format, we can clearly visualize the various forms of chlorite. This new approach has led to the creation of a digital chlorite library, in which we have co-registered optical and SEM-based images, and validated the mineral identification with complimentary techniques such as X-ray diffraction. This new methodology will be of interest and use to all those concerned with the identification and formation of chlorite in sandstones and the effects that diagenetic chlorite growth may have had on reservoir quality. The same approach may be adopted for other minerals (e.g. carbonates) with major element compositional variability that may influence the porosity and permeability of sandstone reservoirs.
Abstract The specific mineralogy of clay grain coats controls the ability of the coat to inhibit quartz cementation in sandstones during prolonged burial and heating. How and why clay‐coat mineralogy varies across marginal marine systems is poorly understood, even though these eogenetic phenomena strongly influence subsequent mesodiagenesis and reservoir quality. The novel development of the ability to predict the distribution of clay‐coat mineralogy would represent an important development for sandstone reservoir quality prediction. In marginal marine sediments, clay minerals occur as grain‐coats, floccules, mud intraclasts, clay‐rich rock fragments or as dispersed material. However, the relationships between clay mineralogy, the amount of clay, and its distribution is poorly understood. This study focused on the Ravenglass Estuary, UK . The key aim was to develop and apply a novel methodology utilising scanning electron microscope – energy dispersive spectrometry, for the first time, on grain coats in modern sediments, to differentiate the clay‐coat mineral signature from that of the bulk sediment, and reveal the distribution of clay minerals across marginal marine sediments. The study showed that marginal marine sediments principally have their clay mineral assemblage present as clay‐coats on sand grains. These clay‐coats have a mixed clay mineralogy and are spatially heterogeneous across the range of marginal‐marine depositional environments. The study further showed that clay‐coat mineralogy is governed initially by the hydrologically‐controlled segregation of the clay minerals within inner estuarine depositional environments, and subsequently by the selective abrasive removal of specific clay mineral types during reworking and transport into the outer estuary and the marine environment. The highest relative abundance of grain‐coating chlorite was in sand‐flat and tidal‐bar depositional environments. The availability of an analogue data set, and an understanding of the controlling processes of clay‐coat mineralogy, offer crucial steps in building a predictive capability for clay‐coat derived elevated reservoir quality in deeply buried sandstones.
The presence of clay-sized particles and clay minerals in modern sands and ancient sandstones has long presented an interesting problem, because primary depositional processes tend to lead to physical separation of fine- and coarse-grained materials. Numerous processes have been invoked to explain the common presence of clay minerals in sandstones, including infiltration, the codeposition of flocculated muds, and bioturbation-induced sediment mixing. How and why clay minerals form as grain coats at the site of deposition remains uncertain, despite clay-coated sand grains being of paramount importance for subsequent diagenetic sandstone properties. We have identified a new biofilm mechanism that explains clay material attachment to sand grain surfaces that leads to the production of detrital clay coats. This study focuses on a modern estuary using a combination of field work, scanning electron microscopy, petrography, biomarker analysis, and Raman spectroscopy to provide evidence of the pivotal role that biofilms play in the formation of clay-coated sand grains. This study shows that within modern marginal marine systems, clay coats primarily result from adhesive biofilms. This bio-mineral interaction potentially revolutionizes the understanding of clay-coated sand grains and offers a first step to enhanced reservoir quality prediction in ancient and deeply buried sandstones.
Abstract Incised valley fills are complex as they correspond to multiple sea‐level cycles which makes interpretation and correlation of stratigraphic surfaces fraught with uncertainty. Despite numerous studies of the stratigraphy of incised valley fills, few have focused on extensive core coverage linked to high fidelity dating in a macro‐tidal, tide‐dominated setting. For this study nineteen sediment cores were drilled through the Holocene succession of the macro‐tidal Ravenglass Estuary in north‐west England, UK. A facies and stratigraphic model of the Ravenglass incised valley complex was constructed, to understand the lateral and vertical stacking patterns relative to the sea‐level changes. The Ravenglass Estuary formed in five main stages. First, incision by rivers ( ca 11 500 to ca 10 500 yrs bp ) cutting through the shelf during lowstand, which was a period of fluvial dominance. Secondly, a rapid transgression and landward migration of the shoreline (10 500 to 6000 yrs bp ). Wave action was dominant, promoting spit formation. The third stage was a highstand at ca 6000 to ca 5000 yrs bp , creating maximum accommodation and the majority of backfilling. The spits narrowed the inlet and dampened wave action. The fourth stage was caused by a minor fall of sea level ( ca 5000 to ca 226 yrs bp ), which forced the system to shift basinward. The fifth and final stage (226 yrs bp to present) involved the backfilling of the River Irt, southward migration of the northerly (Drigg) spit and merging of the River Irt with the Rivers Esk and Mite. The final stage was synchronous with the development of the central basin. As an analogue for ancient and deeply buried sandstones, most of the estuarine sedimentation occurred after transgression, of which the coarsest and cleanest sands are found in the tidal inlet, on the foreshore and within in‐channel tidal bars. The best‐connected (up to 1 km) reservoir‐equivalent sands belong to the more stable channels.