Abstract Kihlmanite-(Ce), Ce 2 TiO 2 [SiO 4 ](HCO 3 ) 2 (H 2 O), is a new rare-earth titanosilicate carbonate, closely related to tundrite-(Ce). It is triclinic, P , a = 4.994(2), b = 7.54(2), c = 15.48(4) Å, α = 103.5(4), β = 90.7(2), γ = 109.2(2) o , V = 533(1) Å 3 , Z = 2 (from powder diffraction data) or a = 5.009(5), b = 7.533(5), c = 15.407(5) Å, α = 103.061(5), β = 91.006(5), γ = 109.285(5)°, V = 531.8(7) Å 3 , Z = 2 (from single-crystal X-ray diffraction data). The mineral was found in the arfvedsonite-aegirine-microcline vein in fenitized metavolcanic rock at the foot of the Mt Kihlman (Chil’man), near the western contact of the Devonian Khibiny alkaline massif and the Proterozoic Imandra-Varzuga greenstone belt. It forms brown spherulites (up to 2 cm diameter) and sheaf-like aggregates of prismatic crystals, flattened on {010} and up to 0.5 mm diameter. Both spherulites and aggregates occur in interstices in arfvedsonite and microcline, in intimate association with golden-green tundrite-(Ce). Kihlmanite-(Ce) is brown, with a vitreous lustre and a pale yellowish-brown streak. The cleavage is perfect on {010}, parting is perpendicular to c and the fracture is stepped. Mohs hardness is ∼3. In transmitted light, the mineral is yellowish brown; pleochroism and dispersion were not observed. Kihlmanite-(Ce) is biaxial (+), α = 1.708(5), β = 1.76(1), γ = 1.82(1) (589 nm), 2 V calc = 89°. The optical orientation is Y ^ c = 5°, other details are unclear. The calculated and measured densities are 3.694 and 3.66(2) g cm −3 , respectively. The mean chemical composition, determined by electron microprobe, is: Na 2 O 0.13, Al 2 O 3 0.24, SiO 2 9.91, CaO 1.50, TiO 2 11.04, MnO 0.26, Fe 2 O 3 0.05, Nb 2 O 5 2.79, La 2 O 3 12.95, Ce 2 O 3 27.33, Pr 2 O 3 2.45, Nd 2 O 3 8.12, Sm 2 O 3 1.67, Gd 2 O 3 0.49 wt.%, with CO 2 15.0 and H 2 O 6.0 wt.% (determined by wet chemical and Penfield methods, respectively), giving a total of 99.93 wt.%. The empirical formula calculated on the basis of Si + Al = 1 atom per formula unit is (Ca 0.16 Na 0.11 Mn 0.02 )∑ 0.29 [(Ce 0.98 La 0.47 Pr 0.09 Nd 0.29 Sm 0.06 Gd 0.02 ) ∑1.91 (Ti 0.82 Nb 0.12 ) ∑0.94 O 2 (Si 0.97 Al 0.03 ) ∑1 O 4.02 (HCO 3 ) 2.01 ](H 2 O) 0.96 . The simplified formula is Ce2TiO2(SiO4)(HCO3)2·H2O. The mineral reacts slowly in cold 10% HCl with weak effervescence and fragmentation into separate plates. The strongest X-ray powder-diffraction lines [listed as d in Å( I ) ( hkl )] are as follows: 15.11(100)(00 ), 7.508(20)(00 ), 6.912(12)(0 1), 4.993(14)(00 ), 3.563(15)(0 1), 2.896(15)(1 ). The crystal structure of kihlmanite-(Ce) was refined to R 1 = 0.069 on the basis of 2441 unique observed reflections (Mo K α, 293 K). It is closely related to the crystal structure of tundrite-(Ce) and is based upon [Ce 2 TiO 2 (SiO 4 )(HCO 3 ) 2 ] layers parallel to (001). Kihlmanite-(Ce) can be considered as a cationdeficient analogue of tundrite-(Ce). The mineral is named in honour of Alfred Oswald Kihlman (1858–1938), a remarkable Finnish geographer and botanist who participated in the Wilhelm Ramsay expeditions to the Khibiny Mountains in 1891–1892. The mineral name also reflects its occurrence at the Kihlman (Chil’man) Mountain.
The production of electrolytic nickel includes the stage of leaching of captured firing nickel matte dust. The solutions formed during this process contain considerable amounts of Pb, which is difficult to extraction due to its low concentration upon the high-salt background. The sorption of lead from model solutions with various compositions by synthetic and natural titanosilicate sorbents (synthetic ivanyukite-Na-T (SIV), ivanyukite-Na-T, and AM-4) have been investigated. The maximal sorption capacity of Pb is up to 400 mg/g and was demonstrated by synthetic ivanyukite In solutions with the high content of Cl− (20 g/L), extraction was observed only with a high amount of Na (150 g/L). Molecular mechanisms and kinetics of lead incorporation into ivanyukite were studied by the combination of single-crystal and powder X-ray diffraction, microprobe analysis, and Raman spectroscopy. Incorporation of lead into natural ivanyukite-Na-T with the R3m symmetry by the substitution 2Na+ + 2O2− ↔ Pb2+ + □ + 2OH− leds to its transformation into the cubic P−43m Pb-exchanged form with the empirical formulae Pb1.26[Ti4O2.52(OH)1.48(SiO4)3]·3.32(H2O).
Nepheline, ideally Na3K(Al4Si4O16) is a key mineral of silica-undersaturated igneous rocks. Under subsolidus conditions, nepheline is intensively replaced by numerous secondary minerals, of which various zeolites (mainly natrolite, analcime, gonnardite), as well as cancrinite, muscovite and Al-O-H phases (gibbsite, böhmite, nordstrandite) are the most common. In the rocks of the Lovozero alkaline massif (Kola Peninsula, NW Russia), nepheline is extensively replaced by the association natrolite + nordstrandite ± böhmite ± paranatrolite. To reproduce the conditions for the formation of such a mineral association, a series of experiments were carried out on the dissolution of nepheline in deionized water, 0.5 mol/L NaCl, 0.5 mol/L NaOH, and 0.1 mol/L HCl at 230 °C for 1/5/15 days. When nepheline is partially dissolved, phases and mixtures of phases precipitate on the surface of its grains, and these phases were diagnosed using X-ray powder diffraction and Raman spectroscopy. Observations in natural samples and experimental studies have shown that the nepheline alteration in the rocks of the Lovozero massif with the formation of natrolite and Al-O-H phases occurred under the influence of a high to medium salinity solution at a pH of near 6.
The microporous titanosilicate sitinakite, KNa2Ti4(SiO4)2O5(OH)·4H2O, was first discovered in the Khibiny alkaline massif. This material is also known as IONSIV IE-911 and is considered as one of the most effective sorbents for Cs+ and Sr2+ from water solutions. We investigate a mechanism of cooperative crystal chemical adaptation caused by the incorporation of La3+ ions into sitinakite structure by the combination of theoretical (geometrical–topological analysis, Voronoi migration map calculation, structural complexity calculation) and empirical methods (PXRD, SCXRD, Raman spectroscopy, scanning electron microscopy). The natural crystals of sitinakite (a = 7.8159(2), c = 12.0167(3) Å) were kept in a 1M solution of La(NO3)3 for 24 h. The ordering of La3+ cations in the channels of the ion-exchanged form La3+Ti4(SiO4)2O5(OH)·4H2O (a = 11.0339(10), b = 11.0598(8), c = 11.8430(7) Å), results in the symmetry breaking according to the group–subgroup relation P42/mcm → Cmmm.
Eudialyte-group minerals (EGMs) are typical accessory or rock-forming minerals of the Lovozero peralkaline massif (Kola Peninsula, Russia). The EGM grains in the rocks of the massif are often replaced by an association of various secondary minerals such as lovozerite and wöhlerite group minerals, as well as terskite, catapleiite, elpidite, gaidonnayite, vlasovite, zircon, and loparite-(Ce). However, EGMs in the Lovozero massif can be not only pseudomorphized, but also partially or completely dissolved. The partial dissolution of eudialyte grains was simulated in three series of experiments, and the results obtained were compared with natural samples. Observations in natural samples and experimental studies have shown that the partial dissolution of eudialyte-group minerals occurs in two stages: (1) loss of sodium and hydration; (2) loss of other cations not included in the zirconosilicate framework. This process proceeds most intensively in acidic hydrothermal solutions and may be responsible for the appearance of new mineral species in the eudialyte group.
The modal composition of (apatite)-nepheline-titanite ore and its geological setting within apatite deposits of the Khibiny Massif allow selective mining of titanite ore and its hydrochloric acidic processing. The reaction of titanite with concentrated hydrochloric acid produces hydrated titanosilicate precipitate (TSP) which, in turn, can be a precursor in titanosilicate synthesis. It is particularly noteworthy that a synthetic analogue of korobitsynite, Na5(Ti3Nb)[Si4O12]2O2(OH)2·7H2O, was synthesized by means of TSP alteration by alkaline hydrothermal solution at 200 °C within three days. The titanosilicate obtained this way has comparatively weak cation-exchange properties regarding Cs+ and Sr2+ cations and considerable photocatalytic activity occurring under visible light, which allows the use of a synthetic korobitsynite analogue (SKR) for production of self-cleaning, sterilizing, and anti-fouling building materials.