Abstract. Experimental homogenization of olivine-hosted melt inclusions representative of near-primary basic and ultrabasic magmas is a powerful approach to investigate the nature of their source regions and the melting conditions in Earth's mantle. There is growing evidence that the total CO2 contents of olivine-hosted melt inclusions may reach values of the order of a single to several weight percent, especially in intraplate continental basalts. To be able to homogenize melt inclusions with such high CO2 contents, we developed a technique allowing for heat treating of the melt inclusions under hydrostatic pressures up to 3–4 GPa in a piston cylinder, using thick-walled Au80–Pd20 containers and molten NaCl as the surrounding medium for the inclusion-bearing olivines. We applied this technique to olivine phenocrysts from Thueyts basanite, Bas-Vivarais volcanic province, French Massif Central. Thueyts melt inclusions were chosen because of their high CO2 contents, as indicated by up to 1.19 wt % dissolved CO2 in the glasses and by the presence of shrinkage bubbles containing abundant carbonate microcrystals in addition to a CO2 fluid phase. The homogenization experiments were conducted at pressures of 1.5 to 2.5 GPa, temperatures of 1275 and 1300 ∘C, and run durations of 30 min. In all the melt inclusions treated at 2.5 GPa–1300 ∘C and half of those treated at 2 GPa–1300 ∘C, we were able to completely homogenize the inclusions, as indicated by the disappearance of the starting bubbles, and we obtained total CO2 contents ranging from 3.2 wt % to 4.3 wt % (3.7 wt % on average). In all the other melt inclusions (equilibrated at 1.5 or 2 GPa and 1300 ∘C or at 2.5 GPa–1275 ∘C), we obtained lower and more variable total CO2 contents (1.4 wt % to 2.9 wt %). In the inclusions with the highest total CO2 contents, the size of the shrinkage bubble was in most cases small (<5 vol %) to medium (<10 vol %): this is a strong argument in favor of an origin of these melt inclusions by homogeneous entrapment of very CO2-rich basanitic liquids (∼ 4 wt %) at pressures of 2 to 2.5 GPa. The lower total CO2 contents measured in some inclusions could reflect a natural variability in the initial CO2 contents, due for instance to melt entrapment at different pressures, or CO2 loss by decrepitation. An alternative scenario is heterogeneous entrapment of basanitic liquid plus dense CO2 fluid at lower pressures but still at least on the order of 1 GPa as indicated by dissolved CO2 contents up to 1.19 wt % in the glasses of unheated melt inclusions. Whatever the scenario, the basanites from the Bas-Vivarais volcanic province were generated in a mantle environment extremely rich in carbon dioxide.
Abstract. The 2014 eruption at Piton de la Fournaise (PdF), La Réunion, which occurred after 41 months of quiescence, began with surprisingly little precursory activity and was one of the smallest so far observed at PdF in terms of duration (less than 2 days) and volume (less than 0.4 × 106 m3). The pyroclastic material was composed of golden basaltic pumice along with fluidal, spiny iridescent and spiny opaque basaltic scoria. Density analyses performed on 200 lapilli reveal that while the spiny opaque clasts are the densest (1600 kg m−3) and most crystalline (55 vol. %), the golden pumices are the least dense (400 kg m−3) and crystalline (8 vol. %). The connectivity data indicate that the fluidal and golden (Hawaiian-like) clasts have more isolated vesicles (up to 40 vol. %) than the spiny (Strombolian-like) clasts (0–5 vol. %). These textural variations are linked to primary pre-eruptive magma storage conditions. The golden and fluidal fragments track the hotter portion of the melt, in contrast to the spiny fragments and lava that mirror the cooler portion of the shallow reservoir. Exponential decay of the magma ascent and output rates through time revealed depressurization of the source during which a stratified storage system was progressively tapped. Increasing syn-eruptive degassing and melt–gas decoupling led to a decrease in the explosive intensity from early fountaining to Strombolian activity. The geochemical results confirm the absence of new input of hot magma into the 2014 reservoir and confirm the emission of a single shallow, differentiated magma source, possibly related to residual magma from the November 2009 eruption. Fast volatile exsolution and crystal–melt separation (second boiling) were triggered by deep pre-eruptive magma transfer and stress field change. Our study highlights the possibility that shallow magma pockets can be quickly reactivated by deep processes without mass or energy (heat) transfer and produce hazardous eruptions with only short-term elusive precursors.
Abstract The application of melt inclusions (MI) to infer magmatic processes assumes the MI have remained as constant mass, constant volume systems since the time of trapping. Understanding the effects of both compositional and volumetric re‐equilibration is key for the interpretation of MI data. Although the re‐equilibration behavior MI in quartz and olivine has been studied in some detail, the process is less understood for other MI host phases such as plagioclase, a common phase in igneous rocks. A MI can re‐equilibrate when it experiences pressure and temperature (PT) conditions that differ from formation PT conditions. During laboratory heating, irreversible MI expansion may occur. As a result, the internal pressure within the MI decreases, resulting in chemical and structural changes to the MI and host. We present results of heating experiments on plagioclase‐hosted MI designed to induce volumetric re‐equilibration. The experiments consisted of incrementally heating the MI to temperatures above the homogenization temperatures. At ∼40°C above, the temperature at which the daughter minerals melted, irreversible volume expansion lowered the pressure in the MI, and led to exsolution of CO 2 into vapor bubbles. With each additional few degrees of heating, additional episodes of CO 2 exsolution, bubble nucleation and expansion of the vapor bubble s occurred. Re‐equilibration of MI in plagioclase occurred through a combination of ductile and brittle deformation of the host surrounding the MI, whereas previous studies have shown that MI in olivine re‐equilibrate dominantly through ductile deformation associated with movement along dislocations. This behavior is consistent with the differing rheological properties of these phases.
L'etude du processus de nucleation des bulles dans les magmas rhyolitiques a ete abordee au cours de cette these. Des experiences de decompression isothermes en autoclave a chauffage externe et trempe rapide ont ete realisees afin de mieux comprendre : (1) les effets de differentes populations cristallines sur la cinetique de nucleation des bulles d'eau, et (2) les effets du CO2 sur la nucleation homogene des bulles. L'objectif ultime de nos travaux etait d'identifier les parametres texturaux qui pourraient constituer des marqueurs robustes de la dynamique d'ascension des magmas rhyolitiques. Le resultat majeur de cette etude est la demonstration que la relation tres forte entre [dP/dt] et n3D tient aussi dans le cas de la nucleation heterogene. La principale implication volcanologique est que l'etude texturale des ponces naturelles pourrait servir a des applications velocimetriques et fournir des renseignements sur la dynamique d'ascension des magmas dans les conduits volcaniques