We investigate depth variations of the 410 and 520 km‐discontinuities beneath Asia and the Pacific which serve as examples for a continental and an oceanic region, respectively. The depths are derived from travel‐time differences between the PP‐phase and its precursors that are reflected at the discontinuities. After accounting for differences in average crustal thickness, we find that the depth of the ‘410’ is rather uniform but larger than expected beneath both regions with a value of approximately 418 km. Signals from the ‘520’ are slightly less pronounced. However, while the average depth of the ‘520’ beneath Asia is about 519 km, we obtain a value of about 531.5 km for the Pacific. Here, the depression of the discontinuities can be explained in view of thermal anomalies in relation to mantle plumes. For Asia, however, the observations seem to require a more complex pattern of thermal anomalies possibly complemented by variations in chemical composition.
Abstract The Rwenzori region, which is located between the Democratic Republic of Congo and Uganda, is part of the western branch of the East African Rift. With elevations of c. 5000 m a.s.l., the Rwenzori Mountains are situated between the Albert Rift and the Edward Rift segments and cover an area of approximately 120 km by 50 km. In this study we investigate the Moho topography beneath the Rwenzori region based on data from a network of 33 broadband seismic stations that were operated from September 2009 until August 2011. Variations of crustal thickness are obtained from the H-κ stacking method applied to P-receiver functions. We discuss the effect of low velocity layers within the crust on the determined Moho depths, which range from 20 km up to 39 km. The lack of a crustal root beneath the Rwenzori Mountains and its location in an extensional setting are contrary to the orogenesis generated by collisions of tectonic units. Our results indicate crustal thinning and provide evidence for the alternative mechanism of crustal bending, triggered by the tensile stress and the elasticity of the crust. Supplementary material: Examples and methods for identifying crustal structures and sediment layers are available at http://www.geolsoc.org.uk/SUP18801 .
The transition between the lithosphere and the asthenosphere is subject to numerous contemporary studies as its nature is still poorly understood. The thickest lithosphere is associated with old cratons and platforms and it has been shown that seismic investigations may fail to image the lithosphere‐asthenosphere boundary in these areas. Instead, several recent studies have proposed a mid‐lithospheric discontinuity of unknown origin existing under several cratons. In this study we investigate the Tanzania craton in East Africa which is enclosed by the eastern and western branches of the East African Rift System. We present evidence from S receiver functions for two consecutive discontinuities at depths of 50–100 km and 140–200 km, which correspond to significant S wave velocity reductions under the Tanzania craton and the Albert and Edward rift segments. By comparison with synthetic waveforms we show that the lower discontinuity coincides with the LAB exhibiting velocity reductions of 6–9%. The shallower interface reveals a velocity drop that varies from 12% beneath the craton to 24% below the Albert‐Edward rift. It is interpreted as an infiltration front marking the upper boundary of altered lithosphere due to ascending asthenospheric melts. This is corroborated by computing S velocity variations based on xenolith samples which exhibit a dense system of crystallized veins acting as pathways of the infiltrating melt. Mineral assemblages in these veins are rich in phlogopite and pyroxenite which can explain the reduced shear wave velocities. Melt infiltration represents a suitable mechanism to form a mid‐lithospheric discontinuity within cratonic lithosphere that is underlain by anomalously hot mantle.
<p>Fogo and Brava are part of the south-western chain of the Cape Verde archipelago, which is believed to originate from a mantle plume. The two islands are located about 18 km apart from each other. Only Fogo experienced historic eruptions at intervals of about 20 years, with the last eruption from November 2014 to February 2015. In contrast to Fogo, Brava shows a high seismic activity. In our study we focus on the characterization of the seismicity in the region. We employ multi-array techniques to study the seismic activity, as many events are located offshore. Additionally, arrays are well suited for the analysis of volcano-related seismic signals without clear onset of phases. From January 2017 to January 2018 we operated a network of three seismic arrays (two on Fogo, one on Brava) and seven single short-period stations (five on Fogo, two on Brava). The arrays consist of 4 broad-band and 6 short-period stations each and are shaped circularly with an aperture of approximately 700 m. We apply a time-domain array analysis to locate seismic events. This approach is computationally more expensive than a traditional f-k analysis, but allows for a higher flexibility in the selection of relevant time windows to calculate the beam energy. For the analysis in the time-domain, traces are first shifted and then cut to suitable time windows to determine the energy stack as a function of horizontal slowness.</p><p>For a single array, epicentral distances can be estimated from arrival-time differences between S- and P-waves, by assuming a suitable velocity structure. However, with two or more arrays, epicenters can be obtained directly from the intersecting beams. The technique is applied to earthquakes as well as to hybrid events. During 2017 the seismicity is clearly dominated by volcano-tectonic earthquakes, mainly originating beneath and around Brava. Additionally we observe hybrid events on Fogo, which are characterized by a transition from high (20-40 Hz) to low (1-10 Hz) frequencies. The events lack clear phases, although they often exhibit a relatively sharp onset. These features provide ideal conditions for the application of the multi-array analysis. The hybrid events originate in the Ch&#227; das Caldeiras region, a collapse scar surrounding the present-day Fogo volcano, and are likely related to rock-fall events.</p>
Abstract. Seismic arrays provide tools for the localization of events without clear phases or events outside the network, where the station coverage prohibits classical localization techniques. Beam forming allows the determination of the direction (back azimuth) and horizontal (apparent) velocity of an incoming wavefront. Here we combine multiple arrays to retrieve event epicentres from the area of intersecting beams without the need to specify a velocity model. The analysis is performed in the time domain, which allows selecting a relatively narrow time window around the phase of interest while preserving frequency bandwidth. This technique is applied to earthquakes and hybrid events in the region of Fogo and Brava, two islands of the southern chain of the Cape Verde archipelago. The results show that the earthquakes mainly originate near Brava, whereas the hybrid events are located on Fogo. By multiple-event beam stacking we are able to further constrain the epicentral locations of the hybrid events in the northwestern part of the collapse scar of Fogo. In previous studies, these events were attributed to shallow hydrothermal processes. However, we obtain relatively high apparent velocities at the arrays, pointing to either deeper sources or complex ray paths. For a better understanding of possible errors of the multi-array analysis, we also compare slowness values obtained from the array analysis with those derived from earthquake locations from classical (local network) localizations. In general, the results agree well. Nevertheless, some systematic deviations of the array-derived back-azimuth and slowness values occur that can be quantified for certain event locations.