Riverbeds are hotspots for microbially-mediated reactions that exhibit pronounced variability in space and time. It is challenging to resolve biogeochemical mechanisms in natural riverbeds, as uncontrolled settings complicate data collection and interpretation. To overcome these challenges, laboratory flumes are often used as proxies for natural riverbed systems. Flumes capture spatiotemporal variability and thus allow for controlled investigations of riverbed biogeochemistry. These investigations implicitly rely on the assumption that the flume microbiome is similar to the microbiome of natural riverbeds. However, this assumption has not been tested and it is unknown how the microbiome of a flume compares to natural aquatic settings, including riverbeds. To evaluate the fundamental assumption that a flume hosts a microbiome similar to natural riverbed systems, we used 16s rRNA gene sequencing and publicly available data to compare the sediment microbiome of a single large laboratory flume to a wide variety of natural ecosystems including lake and marine sediments, river, lake, hyporheic, soil, and marine water, and bank and wetland soils. Richness and Shannon diversity metrics, analyses of variance, Bray-Curtis dissimilarity, and analysis of the common microbiomes between flume and river sediment all indicated that the flume microbiome more closely resembled natural riverbed sediments than other ecosystems, supporting the use of flume experiments for investigating natural microbially-mediated biogeochemical processes in riverbeds.
First posted April 25, 2023 For additional information, contact: Director,California Water Science CenterU.S. Geological Survey6000 J Street, Placer HallSacramento, California 95819 Hexavalent chromium, Cr(VI), was discharged in cooling wastewater to unlined surface ponds from 1952 to 1964 and reached the underlying unconsolidated aquifer at the Pacific Gas and Electric Company (PG&E) Hinkley compressor station in the Mojave Desert, 80 miles northeast of Los Angeles, California. A suite of environmental tracers was analyzed in water samples collected from more than 100 wells to characterize the source, age, and geochemical evolution of groundwater within and near the Cr(VI) plume in Hinkley and Water Valleys. This information was used to help determine the extent of Cr(VI) associated with releases from the Hinkley compressor station and to identify Cr(VI) associated with natural sources.The source of water in most wells, indicated by stable oxygen and hydrogen isotope values for water, delta oxygen-18 and delta deuterium, was recharge by infiltration of intermittent surface flows in the Mojave River. With the exception of small flows in 1958, the Mojave River was largely dry between 1952 and 1969. This dry period spans the period of Cr(VI) releases from the Hinkley compressor station; 1952–69 also spans the period of high tritium levels in precipitation resulting from the atmospheric testing of nuclear weapons and, as a consequence, tritium concentrations in groundwater in Hinkley Valley were comparatively low. Groundwater ages (time since recharge) increased downgradient from the Mojave River and with depth. Tritium, measured by helium ingrowth with a study reporting level of 0.05 tritium unit, was detected in water from 51 percent of wells, with detectable tritium as far as 7 miles downgradient from the Mojave River. Tritium concentrations were higher, and tritium/helium-3 groundwater ages younger, in water from wells near the Mojave River and in water from shallower wells downgradient. Agricultural pumping has decreased groundwater levels as much as 60 feet since 1952. As a result of this pumping, some groundwater containing tritium, and presumably anthropogenic Cr(VI), has been removed from the aquifer. The distribution of wells having carbon-14 activities near or greater than 100-percent modern carbon, consistent with post-1952 recharge water, was similar to the distribution of wells containing detectable tritium. Carbon-14 activities as low as 8.9-percent modern carbon, with carbon-14 ages (unadjusted for reactions with aquifer materials) of almost 20,000 years before present (ybp), were sampled in water from some deep wells. Hexavalent chromium concentrations in older groundwater were as high as 11 micrograms per liter but did not exceed 3.6 micrograms per liter in older water from wells completed in "Mojave-type" deposits (composed of felsic Mojave River stream and near-shore lake deposits sourced from the Mojave River); this value may represent an upper limit on Cr(VI) concentrations in groundwater within Mojave-type deposits that likely approximates background Cr(VI) concentrations in the study area. Chlorofluorocarbons were released to the atmosphere and hydrologic cycle as a result of industrial activity beginning in the 1930s. Chlorofluorocarbon data were not generally suitable for groundwater-age dating in Hinkley and Water Valley because of nonatmospheric contributions from local sources.Strontium-87/86 isotope ratios and stable chromium isotopes, delta chromium-53, provide information on the geochemical evolution of groundwater in the aquifer. Highly radiogenic strontium-87/86 ratios greater than 0.71000 were present in water from wells completed in coarse-textured Mojave-type deposits having low chromium concentrations but were not diagnostic of these materials. Nonradiogenic strontium-87/86 ratios less than 0.70950 were diagnostic of weathered materials in the northern subarea of Hinkley and in Water Valley that were eroded from Miocene (23–5 million ybp) deposits east of the study area. Values for delta chromium-53 ranged from near 0 to 2.8 parts per thousand (‰) difference. The extent of reductive fractionation, mixing with native groundwater, and longitudinal dispersion within the October–December 2015 (Q4 2015) regulatory Cr(VI) plume can be estimated on the basis of the delta chromium-53 isotope composition of groundwater within the plume. Reduction of Cr(VI) to trivalent chromium, Cr(III), can occur in the presence of natural reductants in oxic groundwater. Although not diagnostic of anthropogenic chromium at the concentrations of interest near the Q4 2015 regulatory Cr(VI) plume margin, delta chromium-53 data indicate anthropogenic Cr(VI) within the plume is not conservative and has reacted with aquifer materials; these reactions have removed some anthropogenic Cr(VI) from groundwater.Environmental tracers, and the distribution of modern (post-1952) and premodern (pre-1952) groundwater, inform understanding of the extent of anthropogenic and naturally occurring Cr(VI) near the Q4 2015 regulatory Cr(VI) plume and the understanding of geochemical processes occurring in and near the margins of the Cr(VI) plume. The oxygen and hydrogen isotope compositions of water, tritium/helium-3 groundwater-age data, and carbon-14 data were used with mineralogy and chemistry data as part of a summative-scale analysis to determine the Cr(VI) plume extent later in this professional paper (chapter G).
First posted April 25, 2023 For additional information, contact: Director,California Water Science CenterU.S. Geological Survey6000 J Street, Placer HallSacramento, California 95819 Between 1952 and 1964, hexavalent chromium, Cr(VI), was released into groundwater from the Pacific Gas and Electric Company (PG&E) Hinkley compressor station in the Mojave Desert 80 miles (mi) northeast of Los Angeles, California. Remediation began in 1992, and in 2010, site cleanup was projected to require between 10 and 95 years and was expected to cost between $36 and $176 million. A 2007 PG&E study estimated the natural Cr(VI) background in groundwater in Hinkley Valley to be 3.1 micrograms per liter (μg/L). This concentration was used for interim regulatory purposes by the Lahontan Regional Water Quality Control Board (RWQCB). In the fourth quarter (October–December) 2015, the regulatory Cr(VI) plume extended about 3.0 mi downgradient from the release location within the Hinkley compressor station, while groundwater having Cr(VI) concentrations greater than 3.1 μg/L was present more than 8 mi downgradient. Although rocks and minerals in the area are naturally low in chromium, alluvium eroded from the San Gabriel Mountains and transported to Hinkley Valley by the Mojave River, and locally small exposures of mafic rock, including hornblende diorite and basalt, may contribute Cr(VI) to groundwater. In response to limitations of the PG&E 2007 Cr(VI) background study’s methodology, uncertainty in the natural Cr(VI) background concentration, and an increase in the mapped extent of groundwater having Cr(VI) concentrations greater than the interim regulatory background of 3.1 μg/L, the Lahontan RWQCB concluded that the 2007 PG&E background Cr(VI) study should be updated. The purpose of the updated study is to estimate background Cr(VI) concentrations in groundwater within the upper aquifer upgradient, downgradient, near the margins, and within the footprint of the PG&E Cr(VI) plume in Hinkley, California. The scope of the study included eight tasks; results from those tasks are presented in the chapters within this professional paper.
The effects of oil and gas production on adjacent groundwater quality are becoming a concern in many areas of the United States. As a result, it has become increasingly important to identify which aquifers require monitoring and protection. In this study, we map the extent of groundwater with less than 10,000 mg/L TDS both laterally and vertically near the Elk Hills, Buena Vista and Coles Levee Oil Fields in the San Joaquin Valley, California and note evidence of effects of produced water disposal on salinity within the Tulare aquifer. Subsurface maps showing the depth at which groundwater salinity is less than 10,000 mg/L (or Base 10K) in the Tulare aquifer are generated using geophysical logs and verified by comparison to water sample analyses. The depth to Base 10K ranges from 240 m (800 ft) in Elk Hills to 800 m (2650 ft) in the adjacent Buena Vista syncline and is 670 m (2,200 ft) deep in the Coles Levee area to the east. Log-calculated salinities show a relatively smooth increase with depth prior to disposal activities whereas salinities calculated from logs collected near and after disposal activities show a more variable salinity profile with depth. The effect of produced water injection is represented by log resistivity profiles that change from low resistivity at the base of the sand to higher resistivity near the top due to density differences between the saline produced water and the brackish groundwater within each sand. Continued post-disposal logging in new wells in the 18G disposal area on the south flank of Elk Hills shows that injected water has migrated approximately 1,200 m (4,000 ft) downdip (south) over a period of 20 years since the inception of disposal activity.
Karst aquifers are susceptible to contamination by microorganisms, but relatively few studies have used bacteria as tracers. We demonstrate the utility of Escherichia coli enriched in the stable isotope nitrogen-15 (15 N) as a novel bacterial tracer. Nonpathogenic E. coli from two springs in central Kentucky were grown on 15 N-enriched media. Survival of E. coli and persistence of the isotopic signal were assessed in two sets of laboratory experiments conducted with sterilized spring water in dark microcosms at 14 °C. First, isotopically labeled bacteria survived for 130 d at concentrations within one log unit of the average initial value, and there was no significant difference in δ15 N values from Day 1 to Day 130. Second, water samples with E. coli were inoculated with either of two different species of protozoa (Tetrahymena pyriformis or Colpoda steinii). During 7 d, δ15 N values increased in T. pyriformis while bacterial populations decreased. In a field test, following a 2.1-cm rainfall, 15 N-labeled E. coli, solutes (rhodamine WT dye and bromide), and latex microspheres were injected into a sinkhole approximately 530 m upgradient of a spring. Breakthrough of all tracers coincided, but microspheres were remobilized by subsequent storms, unlike other tracers. Enriched E. coli exhibited more tailing than solute tracers during the initial storm-flow recession. These results indicate that 15 N-enriched E. coli is a viable tracer of bacterial transport in karst aquifers, although predation may attenuate the isotopic signal in systems that are not rapidly flushed.
Abstract Modern microbialites are often located within groundwater discharge zones, yet the role of groundwater in microbialite accretion has yet to be resolved. To understand relationships between groundwater, microbialites, and associated microbial communities, we quantified and characterized groundwater flow and chemistry in active thrombolitic microbialites in Lake Clifton, Western Australia, and compared these observations to inactive thrombolites and lakebed sediments. Groundwater flows upward through an interconnected network of pores within the microstructure of active thrombolites, discharging directly from thrombolite heads into the lake. This upwelling groundwater is fresher than lake water and is hypothesized to support microbial mat growth by reducing salinity and providing limiting nutrients in an osmotically stressful and oligotrophic habitat. This is in contrast to inactive thrombolites that show no evidence of microbial mat colonization and are infiltrated by hypersaline lake water. Groundwater discharge through active thrombolites contrasts with the surrounding lakebed, where hypersaline lake water flows downward through sandy sediments at very low rates. Based on an appreciation for the role of microorganisms in thrombolite accretion, our findings suggest conditions favorable to thrombolite formation still exist in certain locations of Lake Clifton despite increasing lake water salinity. This study is the first to characterize groundwater flow rates, paths, and chemistry within a microbialite‐forming environment and provides new insight into how groundwater can support microbial mats believed to contribute to microbialite formation in modern and ancient environments.