Paleoproterozoic gneisses of the Ellesmere–Devon crystalline terrane on southeastern Ellesmere Island are deformed by metre-scale, east-striking mylonite zones. The shear zones commonly offset pegmatitic dikes and represent the last episode of ductile deformation. Samples were dated by the 40 Ar/ 39 Ar step-heating method to put an upper limit on the time of deformation. Biotite from one tonalitic protolith and five shear zones give geologically meaningful results. Clusters of unoriented biotite grains pseudomorph granulite-facies orthopyroxene in some of the weakly deformed gneisses, whereas the shape-preferred orientation of biotite defines the mylonitic fabric. The intrusive age of the tonalitic protolith is 1958 ± 12 Ma, based on previous U–Pb dating of zircon. 40 Ar/ 39 Ar analysis of biotite from the same sample gave a plateau age of 1929 ± 23 Ma, which is interpreted as cooling from regional granulite facies metamorphism. Three nearby samples of mylonitic tonalite have 40 Ar/ 39 Ar ages in the range of ≈1870–1840 Ma. Biotite from two granitic mylonites over 80 km away return high-resolution Ar spectra in the same range, implying that widespread ductile shearing occurred at ≈1870–1840 Ma, or ≈90 million years after cooling from regional metamorphism. Although the 2.0–1.9 Ga gneisses of southeastern Ellesmere Island correlate with the Inglefield Mobile Belt in North-West Greenland and the Thelon Tectonic Zone, the late shear zones are superimposed on that juvenile arc long after the 1.97 Ga Thelon orogeny.
The 40Ar/39Ar dating method is among the most versatile of geochronometers, having the potential to date a broad variety of K-bearing materials spanning from the time of Earth’s formation into the historical realm. Measurements using modern noble-gas mass spectrometers are now producing 40Ar/39Ar dates with analytical uncertainties of ~0.1%, thereby providing precise time constraints for a wide range of geologic and extraterrestrial processes. Analyses of increasingly smaller subsamples have revealed age dispersion in many materials, including some minerals used as neutron fluence monitors. Accordingly, interpretive strategies are evolving to address observed dispersion in dates from a single sample. Moreover, inferring a geologically meaningful “age” from a measured “date” or set of dates is dependent on the geological problem being addressed and the salient assumptions associated with each set of data. We highlight requirements for collateral information that will better constrain the interpretation of 40Ar/39Ar data sets, including those associated with single-crystal fusion analyses, incremental heating experiments, and in situ analyses of microsampled domains. To ensure the utility and viability of published results, we emphasize previous recommendations for reporting 40Ar/39Ar data and the related essential metadata, with the amendment that data conform to evolving standards of being findable, accessible, interoperable, and reusable (FAIR) by both humans and computers. Our examples provide guidance for the presentation and interpretation of 40Ar/39Ar dates to maximize their interdisciplinary usage, reproducibility, and longevity.
The Early Cretaceous New England-Quebec igneous province is a classic example of postrift magmatism along the eastern North American passive margin. Although a suite of 40Ar/39Ar ages has been available for the Monteregian Hills lobe in the Quebec portion of the New England-Quebec igneous province for many years, only a single high accuracy radiometric age has been published for the Burlington lobe and none for the Taconic lobe in the New England portion of the province. As a result, the timing of and driving mechanisms behind the magmatism have remained unresolved, and a hotspot origin for the entire province persists in the literature. We have dated four dikes and one pluton in the Burlington and Taconic lobes using 40Ar/39Ar and U–Pb geochronology to improve understanding of the age of magmatism in the New England portion of the province. In the Burlington lobe, 40Ar/39Ar plateau ages include a 137.55 ± 1.80 Ma biotite age and a 136.9 ± 4.2 Ma amphibole age for a lamprophyre dike from Charlotte, Vermont, and a 133.6 ± 2.2 Ma biotite age for a lamprophyre dike from Colchester, Vermont. In the Taconic lobe, ages include an 40Ar/39Ar plateau amphibole age of 107.09 ± 1.32 Ma for a lamprophyre dike from Castleton, Vermont, a 122 Ma minimum 40Ar/39Ar biotite age for a lamprophyre dike from Poultney, Vermont, and a 103.13 ± 0.53 Ma LA-ICP-MS U–Pb zircon age from the quartz syenite of the Cuttingsville complex. These results show that magmatism spanned at least 35 Ma, from ∼138 to 103 Ma, which is broadly consistent with the span of magmatism suggested by workers in the 1970s and 1980s based on K–Ar and Rb–Sr ages. This extended span of magmatism for the Burlington and Taconic lobes is in contrast to the brief 1 to 2 Ma episode of magmatism at ∼124 Ma inferred for the Monteregian Hills lobe. The New England-Quebec igneous province has traditionally been attributed to passage of the Great Meteor hotspot. However, given the close proximity of the Burlington and Taconic lobes, the magmatism in these lobes should span only a few Ma if the product of a hotspot. The age data are also difficult to reconcile with a more complex expression of hotspot magmatism in continental lithosphere related to either plume head magmatism or long-distance migration of plume material. Instead, the extended duration of Early Cretaceous New England-Quebec igneous province magmatism in New England may represent an expression of edge-driven convection, a process known to occur along passive margins and inferred to be operating beneath the eastern North American margin today.