Abstract. This paper deals with the risk assessment to alluvial fan flooding at the piedmont zone of carbonate massifs of the southern Apennines chain (southern Italy). These areas are prime spots for urban development and are generally considered to be safer than the valley floors. As a result, villages and towns have been built on alluvial fans which, during intense storms, may be affected by flooding and/or debris flow processes. The study area is located at the foothills of the Maddalena mountains, an elongated NW-SE trending ridge which bounds to the east the wide intermontane basin of Vallo di Diano. The area comprises a wide detrital talus (bajada) made up by coalescent alluvial fans, ranging in age from the Middle Pleistocene to the Holocene. Historical analysis was carried out to ascertain the state of activity of the fans and to identify and map the zones most hit by past flooding. According to the information gathered, the Sala Consilina fans would appear prone to debris flows; in the past these processes have produced extensive damage and loss of life in the urban area. The watershed basins feeding the fans have very low response times and may produce debris flow events with high magnitudes. Taking into account the historical damage, the fan surface morphology, and the present urban development (street orientation and hydraulic network), the piedmont area was zoned and various susceptibility classes were detected. These results may represent a useful tool for studies aiming at territorial hazard mapping and civil protection interventions.
A 1:50,000-scale geomorphological map of the Adige/Etsch River valley bottom (NE Italy) is presented. The study area is 115 km long, and it extends between the villages of Merano/Meran and Calliano, including also the terminal segments of 9 major tributaries of the Adige River. Presently, the Adige shows a sinuous to straight morphology owing to massive channelization occurred during the nineteenth century. Fluvial geomorphological features have been mapped through a detailed-scale comparative multi-temporal analysis carried out on several historical maps dating since the eighteenth century, previous thematic maps, geological maps of the Italian 'CARG' project, orthophotos (2011) and high – resolution DEMs. The map shows the active river channel, dating to 1803–1805 (before channelization), to 1856-1861 (during channelization) and under present conditions, as well as several paleo-channels dating up to the thirteenth century. The analysis led to define the corridor of historical channel changes, a fundamental tool for river management purposes.
The lower Calore and middle Volturno valleys preserve stratigraphical and morphological evidence and tephrostratigraphic markers particularly suitable for reconstructing the long-term geomorphological evolution of the central-southern Apennines. Aim of our study is to identify the main steps of the Quaternary landscape evolution of these valley systems and to improve knowledge about the relationships between fluvial processes and tectonics, volcanic activity, climatic and human influences. To this purpose, we carried out an integrated geomorphological and chrono-stratigraphical analysis of identified fluvial landforms and related deposits, integrated by 230Th/234U datings on travertines from the Telese Plain area. The study highlighted in particular: (1) fluvial sedimentation started in the Middle Pleistocene (~650 ka) within valleys that originated in the lower Pleistocene under the control of high-angle faults; (2) extensional tectonics acted during the Middle and Upper Pleistocene, driving the formation of the oldest fluvial terraces and alluvial fans, and persisted beyond the emplacement of the Campanian Ignimbrite pyroclastic deposits (~39 ka); and (3) from the late Upper Pleistocene onwards (<15 ka), the role of tectonics appears negligible, while climatic changes played a key role in the formation of three orders of valley floor terraces and the youngest alluvial fans.
In mountain regions, the impact of areas on the sediment conveyance can not only be described by their susceptibility to debris flow release, but also by their structural connectivity to the rivers. This generates the need to combine susceptibility and connectivity for accurate analyses of sediment transport. Our study exploits an approach developed by [Steger, er al. 2022; https://doi.org/10.1002/esp.5421] and upscales it to the South Tyrolean Dolomites region. The approach comprised the modeling of debris flow release susceptibility using an interpretable machine learning algorithm, the training of a logistic regression model, and the combination of the resultant classified maps to create a joint susceptibility-connectivity map. The results show the quantitative thresholds for the susceptibility probability and the Index of Connectivity (IC) that allow to discriminate between susceptible and not susceptible, as well as connected and disconnected areas, which are represented via a variety of maps.