Abstract Miller Range ( MIL ) 13317 is a heterogeneous basalt‐bearing lunar regolith breccia that provides insights into the early magmatic history of the Moon. MIL 13317 is formed from a mixture of material with clasts having an affinity to Apollo ferroan anorthosites and basaltic volcanic rocks. Noble gas data indicate that MIL 13317 was consolidated into a breccia between 2610 ± 780 Ma and 1570 ± 470 Ma where it experienced a complex near‐surface irradiation history for ~835 ± 84 Myr, at an average depth of ~30 cm. The fusion crust has an intermediate composition (Al 2 O 3 15.9 wt%; FeO 12.3 wt%) with an added incompatible trace element (Th 5.4 ppm) chemical component. Taking the fusion crust to be indicative of the bulk sample composition, this implies that MIL 13317 originated from a regolith that is associated with a mare‐highland boundary that is KREEP ‐rich (i.e., K, rare earth elements, and P). A comparison of bulk chemical data from MIL 13317 with remote sensing data from the Lunar Prospector orbiter suggests that MIL 13317 likely originated from the northwest region of Oceanus Procellarum, east of Mare Nubium, or at the eastern edge of Mare Frigoris. All these potential source areas are on the near side of the Moon, indicating a close association with the Procellarum KREEP Terrane. Basalt clasts in MIL 13317 are from a very low‐Ti to low‐Ti (between 0.14 and 0.32 wt%) source region. The similar mineral fractionation trends of the different basalt clasts in the sample suggest they are comagmatic in origin. Zircon‐bearing phases and Ca‐phosphate grains in basalt clasts and matrix grains yield 207 Pb/ 206 Pb ages between 4344 ± 4 and 4333 ± 5 Ma. These ancient 207 Pb/ 206 Pb ages indicate that the meteorite has sampled a range of Pre‐Nectarian volcanic rocks that are poorly represented in the Apollo, Luna, and lunar meteorite collections. As such, MIL 13317 adds to the growing evidence that basaltic volcanic activity on the Moon started as early as ~4340 Ma, before the main period of lunar mare basalt volcanism at ~3850 Ma.
Lunar meteorites provide a potential opportunity to expand the study of ancient (>4000 Ma) basaltic volcanism on the Moon, of which there are only a few examples in the Apollo sample collection. Secondary Ion Mass Spectrometry (SIMS) was used to determine the Pb isotopic compositions of multiple mineral phases (Ca-phosphates, baddeleyite K-feldspar, K-rich glass and plagioclase) in two lunar meteorites, Miller Range (MIL) 13317 and Kalahari (Kal) 009. These data were used to calculate crystallisation ages of 4332±2 Ma (95% confidence level) for basaltic clasts in MIL 13317, and 4369±7 Ma (95% confidence level) for the monomict basaltic breccia Kal 009. From the analyses of the MIL 13317 basaltic clasts, it was possible to determine an initial Pb isotopic composition of the protolith from which the clasts originated, and infer a 238U/204Pb ratio (μ-value) of 850±130 (2σ uncertainty) for the magmatic source of this basalt. This is lower than μ-values determined previously for KREEP-rich (an acronym for K, Rare Earth Elements and P) basalts, although analyses of other lithological components in the meteorite suggest the presence of a KREEP component in the regolith from which the breccia was formed and, therefore, a more probable origin for the meteorite on the lunar nearside. It was not possible to determine a similar initial Pb isotopic composition from the Kal 009 data, but previous studies of the meteorite have highlighted the very low concentrations of incompatible trace elements and proposed an origin on the farside of the Moon. Taken together, the data from these two meteorites provide more compelling evidence for widespread ancient volcanism on the Moon. Furthermore, the compositional differences between the basaltic materials in the meteorites provide evidence that this volcanism was not an isolated or localised occurrence, but happened in multiple locations on the Moon and at distinct times. In light of previous studies into early lunar magmatic evolution, these data also imply that basaltic volcanism commenced almost immediately after Lunar Magma Ocean (LMO) crystallisation, as defined by Nd, Hf and Pb model ages at about 4370 Ma.
Abstract The Apollo 16 regolith breccia sample suite provides a record of lunar regolith formation from the basin‐forming epoch (~3.9 Ga) through to a time of declining impactor flux (~2 Ga). These rocks have been characterized into three groups: the “ancient,” “young,” and “soil‐like” regolith breccias on the basis of their petrographic characteristics, and, in the case of the “ancient” and “young” regolith breccias, noble gas inventory. This study investigates the as‐yet unexamined noble gas records of the “soil‐like” regolith breccias to understand more recent regolith evolution processes that occurred at the Apollo 16 landing site. The range of gas concentrations measured for each noble gas in these samples is comparable to those previously reported for the local Apollo 16 soils. The “soil‐like” regolith breccias were found to be more gas rich than the gas poor “young” and “ancient” regolith breccias, consistent with them having formed from comparatively mature soil(s). Our results further confirm the scientific value of lunar regolith breccias and bulk regolith samples as probes of the impact history and the space environment of the lunar surface across a wide range of time.
Abstract Halogens and noble gases within submarine basaltic glasses are critical tracers of interactions between the surface volatile reservoirs and the mantle. However, as the halogens and noble gases are concentrated within seawater, sediments, and the oceanic crust this makes the original volatile signature of submarine basaltic lavas susceptible to geochemical overprinting. This study combines halogen (Cl, Br, and I), noble gas, and K concentrations within a single submarine basaltic quenched margin to quantify the amount of seawater assimilation during eruption, and to further elucidate the mechanisms of overprinting. The outer sections of the glass rim are enriched in Cl compared to the interior of the margin, which maintains mantle‐like Br/Cl, I/Cl, and K/Cl ratios. Low Br/Cl and K/Cl in the outer sections of the basaltic glass margin indicate that the Cl enrichment in the outer glass is derived from the assimilation of a saline brine component with up to 70% of the Cl within the glass being derived from brine assimilation. Atmospheric noble gas contamination is decoupled from halogen contamination with contaminated outer sections maintaining MORB‐like 40 Ar/ 36 Ar, suggesting seawater‐derived brine assimilation during eruption is not the dominant source of atmospheric noble gases in submarine basalts. Volatile heterogeneities in submarine basalts introduced during and after eruption, as we have shown in this study, have the potential to expand the range of mantle halogen compositions and only by better understanding these heterogeneities can the Br/Cl and I/Cl variance in mantle derived samples are determined accurately.
The Moon is an archive of impact cratering in the Solar System throughout the past 4.5 billion years. It preserves this record better than larger, more complex planets like the Earth, Mars and Venus, which have largely lost their ancient crusts through geological reprocessing and hydrospheric/atmospheric weathering. Identifying the parent bodies of impactors (i.e. asteroid bodies, comets from the Kuiper belt or the Oort Cloud) provides geochemical and chronological constraints for models of Solar System dynamics, helping to better inform our wider understanding of the evolution of the Solar System and the transfer of small bodies between planets. In this review article, we discuss the evidence for populations of impactors delivered to the Moon at different times in the past. We also propose approaches to the identification and characterisation of meteoritic material on the Moon in the context of future lunar exploration efforts.
Geochronology, or determination of absolute ages for geologic events, underpins many inquiries into the formation and evolution of planets and our Solar System. Absolute ages of ancient and recent magmatic products provide strong constraints on the dynamics of magma oceans and crustal formation, as well as the longevity and evolution of interior heat engines and distinct mantle/crustal source regions. Absolute dating also relates habitability markers to the timescale of evolution of life on Earth. However, the number of geochronologically-significant terrains across the inner Solar System far exceeds our ability to conduct sample return from all of them. In preparation for the upcoming Decadal Survey, our team formulated a set of medium-class (New Frontiers) mission concepts to three different locations (the Moon, Mars, and Vesta) where sites that record Solar System bombardment, magmatism, and/or habitability are uniquely preserved and accessible. We developed a notional payload to directly date planetary surfaces, consisting of two instruments capable of measuring radiometric ages in situ, an imaging spectrometer, optical cameras to provide site geologic context and sample characterization, a trace element analyzer to augment sample contextualization, and a sample acquisition and handling system. Landers carrying this payload to the Moon, Mars, and Vesta would likely fit into the New Frontiers cost cap in our study (~$1B). A mission of this type would provide crucial constraints on planetary history while also enabling a broad suite of investigations such as basic geologic characterization, geomorphologic analysis, ground truth for remote sensing analyses, analyses of major, minor, trace, and volatile elements, atmospheric and other long-lived monitoring, organic molecule analyses, and soil and geotechnical properties.
Francesca McDonald, Dayl Martin, Natalie Curran and Abigail Calzada-Diaz summarize the research achieved by summer interns at the Lunar and Planetary Institute in Houston.