Ce papier discute l’histoire de la geochimie isotopique au Laboratoire Magmas et Volcans (LMV) depuis le debut des annees 2000. Il se focalise plus particulierement sur les donnees acquises suite a l’installation de nouveaux spectrometres de masse, de derniere generation, a source solide et a source plasma. Les themes abordes concernent aussi bien le developpement analytique des outils isotopiques que l’evolution de la discipline au cours de cette periode, en termes de cibles et de sujets.
Abstract Volcano observatories (VOs) around the world are required to maintain surveillance of their volcanoes and inform civil protection and aviation authorities about impending eruptions. They often work through consolidated procedures to respond to volcanic crises in a timely manner and provide a service to the community aimed at reducing the potential impact of an eruption. Within the International Airways Volcano Watch (IAVW) framework of the International Civil Aviation Organisation (ICAO), designated State Volcano Observatories (SVOs) are asked to operate a colour coded system designed to inform the aviation community about the status of a volcano and the expected threats associated. Despite the IAVW documentation defining the different colour-coded levels, operating the aviation colour code in a standardised way is not easy, as sometimes, different SVOs adopt different strategies on how, when, and why to change it. Following two European VOs and Volcanic Ash Advisory Centres (VAACs) workshops, the European VOs agreed to present an overview on how they operate the aviation colour code. The comparative analysis presented here reveals that not all VOs in Europe use this system as part of their operational response, mainly because of a lack of volcanic eruptions since the aviation colour code was officially established, or the absence of a formal designation as an SVO. We also note that the VOs that do regularly use aviation colour code operate it differently depending on the frequency and styles of eruptions, the historical eruptive activity, the nature of the unrest, the monitoring level, institutional norms, previous experiences, and on the agreement they may have with the local Air Transport Navigation providers. This study shows that even though the aviation colour code system was designed to provide a standard, its usage strongly depends on the institutional subjectivity in responding to volcano emergencies. Some common questions have been identified across the different (S)VOs that will need to be addressed by ICAO to have a more harmonised approach and usage of the aviation colour code.
Abstract Volcano Observatories (VOs) around the world are required to maintain surveillance of their volcanoes and inform civil protection and aviation authorities about impending eruptions. They often work through consolidated procedures to respond to volcanic crises in a timely manner and provide a service to the community aimed at reducing the potential impact of an eruption. Within the International Airways Volcano Watch (IAVW) framework of the International Civil Aviation Organisation, designated State Volcano Observatories (SVOs) are asked to operate a colour coded system designed to inform the aviation community about the status of a volcano and the expected threats associated. Despite the IAVW documentation defining the different colour-coded levels, operating the Aviation Colour Code (ACC) in a standardised way is not easy, as sometimes, different SVOs adopt different strategies on how, when, and why to change it. Following two European VOs and Volcanic Ash Advisory Centres (VAACs) workshops, the European VOs agreed to present an overview on how they operate the ACC. The comparative analysis presented here reveals that not all VOs in Europe use the ACC as part of their operational response, mainly because of a lack of volcanic eruptions since the ACC was officially established, or the absence of a formal appointment as an SVO. We also note that the VOs, which do regularly adopt ACC, operate differently depending on the frequency and styles of eruptions, the historical eruptive activity, the nature of the unrest, the monitoring level, and also on the agreement they may have with the local Air Transport Navigation providers. This study shows that even though the ACC system was designed to provide a standard, its usage strongly depends on the evaluation of the actors responding to the volcano emergencies. Some common questions have been identified across the different (S)VOs that will need to be addressed by ICAO in order to have a more harmonised approach and usage of the ACC.
Axial bathymetry, major/trace elements, and isotopes suggest that the Pacific‐Antarctic Ridge (PAR) between 56°S and 66°S is devoid of any hotspot influence. PAR (56–66°S) samples have in average lower 87 Sr/ 86 Sr and 143 Nd/ 144 Nd and higher 206 Pb/ 204 Pb than northern Pacific mid‐ocean ridge basalts (MORB), and also than MORB from the other oceans. The high variability of Pb isotopic ratios (compared to Sr and Nd) can be due to either a general high μ (HIMU) (high U/Pb) affinity of the southern Pacific upper mantle or to a mantle event first recorded in time by Pb isotopes. Compiling the results of this study with those from the PAR between 53°S and 57°S gives a continuous view of mantle characteristics from south Pitman Fracture Zone (FZ) to Vacquier FZ, representing about 3000 km of spreading axis. The latitude of Udintsev FZ (56°S) is a limit between, to the north, a domain with large geochemical variations and, to the south, one with small variations. The spreading rate has intermediate values (54 mm/yr at 66°S to 74 mm/yr at 56°S) which increase along the PAR, while the axial morphology changes from valley to dome. The morphological transition is not recorded by the chemical properties of the ridge basalts nor by the inferred mantle temperature which displays few variations (30–40°C) along the PAR. Contrary to what is observed along the South‐East Indian Ridge, PAR morphology appears to be controlled more by spreading rate rather than by mantle temperature. Much of the major and trace element variability results from segmentation control on the shallowest thermal structure of the mantle. The cold edge of a fracture zone seems to be more efficient when occurring in an axial dome context. It is expressed as an increase of the magnitude of the Transform Fault Effect along the valley‐dome transition, resulting in a clear increase of trace element ratio variability (such as Nb/Zr). There is no strong evidence for the previously proposed southwestward asthenospheric flow in the area. However, this flow model could explain the intrasegment asymmetric patterns.
Abstract. The 2014 eruption at Piton de la Fournaise (PdF), La Réunion, which occurred after 41 months of quiescence, began with surprisingly little precursory activity and was one of the smallest so far observed at PdF in terms of duration (less than 2 days) and volume (less than 0.4 × 106 m3). The pyroclastic material was composed of golden basaltic pumice along with fluidal, spiny iridescent and spiny opaque basaltic scoria. Density analyses performed on 200 lapilli reveal that while the spiny opaque clasts are the densest (1600 kg m−3) and most crystalline (55 vol. %), the golden pumices are the least dense (400 kg m−3) and crystalline (8 vol. %). The connectivity data indicate that the fluidal and golden (Hawaiian-like) clasts have more isolated vesicles (up to 40 vol. %) than the spiny (Strombolian-like) clasts (0–5 vol. %). These textural variations are linked to primary pre-eruptive magma storage conditions. The golden and fluidal fragments track the hotter portion of the melt, in contrast to the spiny fragments and lava that mirror the cooler portion of the shallow reservoir. Exponential decay of the magma ascent and output rates through time revealed depressurization of the source during which a stratified storage system was progressively tapped. Increasing syn-eruptive degassing and melt–gas decoupling led to a decrease in the explosive intensity from early fountaining to Strombolian activity. The geochemical results confirm the absence of new input of hot magma into the 2014 reservoir and confirm the emission of a single shallow, differentiated magma source, possibly related to residual magma from the November 2009 eruption. Fast volatile exsolution and crystal–melt separation (second boiling) were triggered by deep pre-eruptive magma transfer and stress field change. Our study highlights the possibility that shallow magma pockets can be quickly reactivated by deep processes without mass or energy (heat) transfer and produce hazardous eruptions with only short-term elusive precursors.