Abstract. Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE into the global vegetation model ORCHIDEE, which was then used to simulate burned area over the 20th century. Special attention was paid to the evaluation of other fire regime indicators such as seasonality, fire size and fire length, next to burned area. For 2001–2006, the simulated global spatial extent of fire agrees well with that given by satellite-derived burned area data sets (L3JRC, GLOBCARBON, GFED3.1), and 76–92% of the global burned area is simulated as collocated between the model and observation, depending on which data set is used for comparison. The simulated global mean annual burned area is 346 Mha yr−1, which falls within the range of 287–384 Mha yr−1 as given by the three observation data sets; and is close to the 344 Mha yr−1 by the GFED3.1 data when crop fires are excluded. The simulated long-term trend and variation of burned area agree best with the observation data in regions where fire is mainly driven by climate variation, such as boreal Russia (1930–2009), along with Canada and US Alaska (1950–2009). At the global scale, the simulated decadal fire variation over the 20th century is only in moderate agreement with the historical reconstruction, possibly because of the uncertainties of past estimates, and because land-use change fires and fire suppression are not explicitly included in the model. Over the globe, the size of large fires (the 95th quantile fire size) is underestimated by the model for the regions of high fire frequency, compared with fire patch data as reconstructed from MODIS 500 m burned area data. Two case studies of fire size distribution in Canada and US Alaska, and southern Africa indicate that both number and size of large fires are underestimated, which could be related with short fire patch length and low daily fire size. Future efforts should be directed towards building consistent spatial observation data sets for key parameters of the model in order to constrain the model error at each key step of the fire modelling.
Abstract. Atmospheric CO2 drives most of the greenhouse effect increase. One major uncertainty on the future rate of increase of CO2 in the atmosphere is the impact of the anticipated climate change on the vegetation. Dynamic Global Vegetation Models (DGVM) are used to address this question. ORCHIDEE is such a DGVM that has proven useful for climate change studies. However, there is no objective and methodological way to accurately assess each new available version on the global scale. In this paper, we submit a methodological evaluation of ORCHIDEE by correlating satellite-derived Vegetation Index time series against those of the modeled Fraction of absorbed Photosynthetically Active Radiation (FPAR). A perfect correlation between the two is not expected, however an improvement of the model should lead to an increase of the overall performance. We detail two case studies in which model improvements are demonstrated, using our methodology. In the first one, a new phenology version in ORCHIDEE is shown to bring a significant impact on the simulated annual cycles, in particular for C3 Grasses and C3 Crops. In the second case study, we compare the simulations when using two different weather fields to drive ORCHIDEE. The ERA-Interim forcing leads to a better description of the FPAR interannual anomalies than the simulation forced by a mixed CRU-NCEP dataset. This work shows that long time series of satellite observations, despite their uncertainties, can identify weaknesses in global vegetation models, a necessary first step to improving them.
Abstract. We analyze how biases of meteorological drivers impact the calculation of ecosystem CO2, water and energy fluxes by models. To do so, we drive the same ecosystem model by meteorology from gridded products and by meteorology from local observation at eddy-covariance flux sites. The study is focused on six flux tower sites in France spanning across a climate gradient of 7–14 °C annual mean surface air temperature and 600–1040 mm mean annual rainfall, with forest, grassland and cropland ecosystems. We evaluate the results of the ORCHIDEE process-based model driven by meteorology from four different analysis data sets against the same model driven by site-observed meteorology. The evaluation is decomposed into characteristic time scales. The main result is that there are significant differences in meteorology between analysis data sets and local observation. The phase of seasonal cycle of air temperature, humidity and shortwave downward radiation is reproduced correctly by all meteorological models (average R2 = 0.90). At sites located in altitude, the misfit of meteorological drivers from analysis data sets and tower meteorology is the largest. We show that day-to-day variations in weather are not completely well reproduced by meteorological models, with R2 between analysis data sets and measured local meteorology going from 0.35 to 0.70. The bias of meteorological driver impacts the flux simulation by ORCHIDEE, and thus would have an effect on regional and global budgets. The forcing error, defined by the simulated flux difference resulting from prescribing modeled instead of observed local meteorology drivers to ORCHIDEE, is quantified for the six studied sites at different time scales. The magnitude of this forcing error is compared to that of the model error defined as the modeled-minus-observed flux, thus containing uncertain parameterizations, parameter values, and initialization. The forcing error is on average smaller than but still comparable to model error, with the ratio of forcing error to model error being the largest on daily time scale (86%) and annual time scales (80%). The forcing error incurred from using a gridded meteorological data set to drive vegetation models is therefore an important component of the uncertainty budget of regional CO2, water and energy fluxes simulations, and should be taken into consideration in up-scaling studies.
Abstract. Evaluating land surface models (LSMs) using available observations is important for understanding the potential and limitations of current Earth system models in simulating water- and carbon-related variables. To reveal the error sources of a LSM, five essential climate variables have been evaluated in this paper (i.e., surface soil moisture, evapotranspiration, leaf area index, surface albedo, and precipitation) via simulations with the IPSL (Institute Pierre Simon Laplace) LSM ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) model, particularly focusing on the difference between (i) forced simulations with atmospheric forcing data (WATCH Forcing Data ERA-Interim – WFDEI) and (ii) coupled simulations with the IPSL atmospheric general circulation model. Results from statistical evaluation, using satellite- and ground-based reference data, show that ORCHIDEE is well equipped to represent spatiotemporal patterns of all variables in general. However, further analysis against various landscape and meteorological factors (e.g., plant functional type, slope, precipitation, and irrigation) suggests potential uncertainty relating to freezing and/or snowmelt, temperate plant phenology, irrigation, and contrasted responses between forced and coupled mode simulations. The biases in the simulated variables are amplified in the coupled mode via surface–atmosphere interactions, indicating a strong link between irrigation–precipitation and a relatively complex link between precipitation–evapotranspiration that reflects the hydrometeorological regime of the region (energy limited or water limited) and snow albedo feedback in mountainous and boreal regions. The different results between forced and coupled modes imply the importance of model evaluation under both modes to isolate potential sources of uncertainty in the model.
Abstract. This study uses a variational data assimilation framework to simultaneously constrain a global ecosystem model with eddy covariance measurements of daily net ecosystem exchange (NEE) and latent heat (LE) fluxes from a large number of sites grouped in seven plant functional types (PFTs). It is an attempt to bridge the gap between the numerous site-specific parameter optimization works found in the literature and the generic parameterization used by most land surface models within each PFT. The present multisite approach allows deriving PFT-generic sets of optimized parameters enhancing the agreement between measured and simulated fluxes at most of the sites considered, with performances often comparable to those of the corresponding site-specific optimizations. Besides reducing the PFT-averaged model–data root-mean-square difference (RMSD) and the associated daily output uncertainty, the optimization improves the simulated CO2 balance at tropical and temperate forests sites. The major site-level NEE adjustments at the seasonal scale are reduced amplitude in C3 grasslands and boreal forests, increased seasonality in temperate evergreen forests, and better model–data phasing in temperate deciduous broadleaf forests. Conversely, the poorer performances in tropical evergreen broadleaf forests points to deficiencies regarding the modelling of phenology and soil water stress for this PFT. An evaluation with data-oriented estimates of photosynthesis (GPP – gross primary productivity) and ecosystem respiration (Reco) rates indicates distinctively improved simulations of both gross fluxes. The multisite parameter sets are then tested against CO2 concentrations measured at 53 locations around the globe, showing significant adjustments of the modelled seasonality of atmospheric CO2 concentration, whose relevance seems PFT-dependent, along with an improved interannual variability. Lastly, a global-scale evaluation with remote sensing NDVI (normalized difference vegetation index) measurements indicates an improvement of the simulated seasonal variations of the foliar cover for all considered PFTs.
Reflectance measurements from the spaceborne Polarization and Directionality of Earth Reflectances (POLDER) instrument are used to analyze the so‐called hot spot directional signature in the backscattering direction. The hot spot is measured with an angular resolution better than half a degree using the directional capabilities of the radiometer, with some assumptions on the spatial homogeneity of the surface. The analysis yields the first quantitative observation of the hot spot signature of vegetated surfaces, with such angular resolution. The measurements show that the hot spot reflectance is a function of the phase angle ξ rather than a function of a parameter Δ, often used in hot spot modeling, that quantifies the horizontal distance between Sun and view directions. The observed directional signature is very accurately fitted by a linear ratio of the phase angle, as predicted by a simple theory of radiative transfer within the canopy foliage. Most of the measured hot spot half widths are between 1° and 2°. Some dispersion occurs for the cases belonging to the forest and desert International Geosphere‐Biosphere Program (IGBP) classes, in the range 1° to 5°. Theory predicts that the width is independent of wavelength. Our measurements indicate that the widths at 670 and 865 nm are very close, but with a significant scatter in regards to the rather small variability. The distribution of the width as a function of the IGBP surface classification shows a variability within the classes that is larger than between the classes, except for the “evergreen broadleaf” class. The hot spot reflectance amplitude is generally on the order of 0.10–0.20 at 865 nm and 0.03–0.18 at 670 nm, although the full range of values is wider. For thick canopies, it may be interpreted in terms of foliage element (leaf) reflectance. Retrieved values are on the order of 0.4 in the near infrared and in the range 0.05–0.20 at 670 nm. At 440 nm, the amplitude of the signature is very small, as is expected from the small surface reflectance. This confirms that the atmospheric contribution to the reflectance increase at the backscattering direction is negligible.
Abstract. Current climate warming is accelerating mass loss from glaciers and ice sheets. In Greenland, the rates of mass changes are now dominated by changes in surface mass balance (SMB) due to increased surface melting. To improve the future sea-level rise projections, it is therefore critical to have an accurate estimate of the SMB, which depends on the representation of the processes occurring within the snowpack. The Explicit Snow (ES) scheme implemented in the land surface model Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) has not yet been adapted to ice-covered areas. Here, we present the preliminary developments we made to apply the ES model to glaciers and ice sheets. Our analysis mainly concerns the model's ability to represent ablation-related processes. At the regional scale, our results are compared to the MAR regional atmospheric model outputs and to MODIS albedo retrievals. Using different albedo parameterizations, we performed offline ES simulations forced by the MAR model over the 2000–2019 period. Our results reveal a strong sensitivity of the modelled SMB components to the albedo parameterization. Results inferred with albedo parameters obtained using a manual tuning approach present very good agreement with the MAR outputs. Conversely, with the albedo parameterization used in the standard ORCHIDEE version, runoff and sublimation were underestimated. We also tested parameters found in a previous data assimilation experiment, calibrating the ablation processes using MODIS snow albedo. While these parameters greatly improve the modelled albedo over the entire ice sheet, they degrade the other model outputs compared to those obtained with the manually tuned approach. This is likely due to the model overfitting to the calibration albedo dataset without any constraint applied to the other processes controlling the state of the snowpack. This underlines the need to perform a “multi-objective” optimization using auxiliary observations related to internal snowpack processes. Although there is still room for further improvements, the developments reported in the present study constitute an important advance in assessing the Greenland SMB with possible extension to mountain glaciers or the Antarctic ice sheet.
Abstract Accurate terrestrial biosphere model (TBM) simulations of gross carbon uptake (gross primary productivity – GPP) are essential for reliable future terrestrial carbon sink projections. However, uncertainties in TBM GPP estimates remain. Newly-available satellite-derived sun-induced chlorophyll fluorescence (SIF) data offer a promising direction for addressing this issue by constraining regional-to-global scale modelled GPP. Here, we use monthly 0.5° GOME-2 SIF data from 2007 to 2011 to optimise GPP parameters of the ORCHIDEE TBM. The optimisation reduces GPP magnitude across all vegetation types except C4 plants. Global mean annual GPP therefore decreases from 194 ± 57 PgCyr −1 to 166 ± 10 PgCyr −1 , bringing the model more in line with an up-scaled flux tower estimate of 133 PgCyr −1 . Strongest reductions in GPP are seen in boreal forests: the result is a shift in global GPP distribution, with a ~50% increase in the tropical to boreal productivity ratio. The optimisation resulted in a greater reduction in GPP than similar ORCHIDEE parameter optimisation studies using satellite-derived NDVI from MODIS and eddy covariance measurements of net CO 2 fluxes from the FLUXNET network. Our study shows that SIF data will be instrumental in constraining TBM GPP estimates, with a consequent improvement in global carbon cycle projections.
Abstract. Greenland ice sheet mass loss continues to accelerate as global temperatures increase. The surface albedo of the ice sheet determines the amount of absorbed solar energy, which is a key factor in driving surface snow and ice melting. Satellite retrieved albedo allows us to compare and optimise modelled albedo over the entirety of the ice sheet. We optimise the parameters of the albedo scheme in the ORCHIDEE land surface model for three random years taken over the 2000–2017 period and validate over the remaining years. In particular, we want to improve the albedo at the edges of the ice sheet since they correspond to ablation areas and show the greatest variations in runoff and surface mass balance. By giving a larger weight to points at the ice sheet's edge, we improve the model-data fit by reducing the RMSD by over 25 % for the whole ice sheet for the summer months. This improvement is consistent for all years, even those not used in the calibration step. We conclude by showing which additional model outputs are impacted by changes to the albedo parameters encouraging future work using multiple data streams for optimisation.
Abstract. Greenland ice sheet mass loss continues to accelerate as global temperatures increase. The surface albedo of the ice sheet determines the amount of absorbed solar energy, which is a key factor in driving surface snow and ice melting. Satellite-retrieved snow albedo allows us to compare and optimise modelled albedo over the entirety of the ice sheet. We optimise the parameters of the albedo scheme in the ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) land surface model for 3 random years taken over the 2000–2017 period and validate over the remaining years. In particular, we want to improve the albedo at the edges of the ice sheet, since they correspond to ablation areas and show the greatest variations in runoff and surface mass balance. By giving a larger weight to points at the ice sheet's edge, we improve the model–data fit by reducing the root-mean-square deviation by over 25 % for the whole ice sheet for the summer months. This improvement is consistent for all years, even those not used in the calibration step. We also show the optimisation successfully improves the model–data fit at 87.5 % of in situ sites from the PROMICE (Programme for Monitoring of the Greenland Ice Sheet) network. We conclude by showing which additional model outputs are impacted by changes to the albedo parameters, encouraging future work using multiple data streams when optimising these parameters.