Acidity is a serious limitation to plant production on many of the world's agricultural soils. Toxic aluminium (Al) cations solubilized by the acidity rapidly inhibit root growth and limit subsequent uptake of water and nutrients. Recent work has shown that the ALMT1 gene of wheat ( Triticum aestivum ) encodes a malate transporter that is associated with malate efflux and Al tolerance. We generated transgenic barley ( Hordeum vulgare ) plants expressing ALMT1 and assessed their ability to exude malate and withstand Al stress. ALMT1 expression in barley conferred an Al-activated efflux of malate with properties similar to those of Al-tolerant wheat. The transgenic barley showed a high level of Al tolerance when grown in both hydroponic culture and on acid soils. These findings provide additional evidence that ALMT1 is a major Al-tolerance gene and demonstrate its ability to confer effective tolerance to acid soils through a transgenic approach in an important crop species.
Aluminum (Al) tolerance in Arabidopsis is a genetically complex trait, yet it is mediated by a single physiological mechanism based on Al-activated root malate efflux. We investigated a possible molecular determinant for Al tolerance involving a homolog of the wheat Al-activated malate transporter, ALMT1 . This gene, named AtALMT1 (At1g08430), was the best candidate from the 14-member AtALMT family to be involved with Al tolerance based on expression patterns and genomic location. Physiological analysis of a transferred DNA knockout mutant for AtALMT1 as well as electrophysiological examination of the protein expressed in Xenopus oocytes showed that AtALMT1 is critical for Arabidopsis Al tolerance and encodes the Al-activated root malate efflux transporter associated with tolerance. However, gene expression and sequence analysis of AtALMT1 alleles from tolerant Columbia (Col), sensitive Landsberg erecta (Ler), and other ecotypes that varied in Al tolerance suggested that variation observed at AtALMT1 is not correlated with the differences observed in Al tolerance among these ecotypes. Genetic complementation experiments indicated that the Ler allele of AtALMT1 is equally effective as the Col allele in conferring Al tolerance and Al-activated malate release. Finally, fine-scale mapping of a quantitative trait locus (QTL) for Al tolerance on chromosome 1 indicated that AtALMT1 is located proximal to this QTL. These results indicate that AtALMT1 is an essential factor for Al tolerance in Arabidopsis but does not represent the major Al tolerance QTL also found on chromosome 1.