Hydrologic soil groups (HSGs) are a fundamental component of the USDA curve-number (CN) method for estimation of rainfall runoff; yet these data are not readily available in a format or spatial-resolution suitable for regional- and global-scale modeling applications. We developed a globally consistent, gridded dataset defining HSGs from soil texture, bedrock depth, and groundwater. The resulting data product-HYSOGs250m-represents runoff potential at 250 m spatial resolution. Our analysis indicates that the global distribution of soil is dominated by moderately high runoff potential, followed by moderately low, high, and low runoff potential. Low runoff potential, sandy soils are found primarily in parts of the Sahara and Arabian Deserts. High runoff potential soils occur predominantly within tropical and sub-tropical regions. No clear pattern could be discerned for moderately low runoff potential soils, as they occur in arid and humid environments and at both high and low elevations. Potential applications of this data include CN-based runoff modeling, flood risk assessment, and as a covariate for biogeographical analysis of vegetation distributions.
Globally, the spatial distribution of vegetation is governed primarily by climatological factors (rainfall and temperature, seasonality, and inter-annual variability). The local distribution of vegetation, however, depends on local edaphic conditions (soils and topography) and disturbances (fire, herbivory, and anthropogenic activities). Abrupt spatial or temporal changes in vegetation distribution can occur if there are positive (i.e., amplifying) feedbacks favoring certain vegetation states under otherwise similar climatic and edaphic conditions. Previous studies in the tropical savannas of Africa and other continents using the MODerate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous fields (VCF) satellite data product have focused on discontinuities in the distribution of tree cover at different rainfall levels, with bimodal distributions (e.g., concentrations of high and low tree cover) interpreted as alternative vegetation states. Such observed bimodalities over large spatial extents may not be evidence for alternate states, as they may include regions that have different edaphic conditions and disturbance histories. In this study, we conduct a systematic multi-scale analysis of diverse MODIS data streams to quantify the presence and spatial consistency of alternative vegetation states in Sub-Saharan Africa. The analysis is based on the premise that major discontinuities in vegetation structure should also manifest as consistent spatial patterns in a range of remote sensing data streams, including, for example, albedo and land surface temperature (LST). Our results confirm previous observations of bimodal and multimodal distributions of estimated tree cover in the MODIS VCF. However, strong disagreements in the location of multimodality between VCF and other data streams were observed at 1 km scale. Results suggest that the observed distribution of VCF over vast spatial extents are multimodal, not because of local-scale feedbacks and emergent bifurcations (the definition of alternative states), but likely because of other factors including regional scale differences in woody dynamics associated with edaphic, disturbance, and/or anthropogenic processes. These results suggest the need for more in-depth consideration of bifurcation mechanisms and thus the likely spatial and temporal scales at which alternative states driven by different positive feedback processes should manifest.
The West African Sahel Cropland map (WASC30) is a new 30-m cropland extent product for the nominal year of 2015. We used the computing resources provided by Google Earth Engine (GEE) to fit and apply Random Forest models for cropland detection in each of 189 grid cells (composed of 100 km2, hence a total of ~1.9 × 106 km2) across five countries of the West African Sahel (Burkina Faso, Mauritania, Mali, Niger, and Senegal). Landsat-8 surface reflectance (Bands 2–7) and vegetation indices (NDVI, EVI, SAVI, and MSAVI), organized to include dry-season and growing-season band reflectances and vegetation indices for the years 2013–2015, were used as predictors. Training data were derived from an independent, high-resolution, visually interpreted sample dataset that classifies sample points across West Africa using a 2-km grid (~380,000 points were used in this study, with 50% used for model training and 50% used for model validation). Analysis of the new cropland dataset indicates a summed cropland area of ~316 × 103 km2 across the 5 countries, primarily in rainfed cropland (309 × 103 km2), with irrigated cropland area (7 × 103 km2) representing 2% of the total cropland area. At regional scale, the cropland dataset has an overall accuracy of 90.1% and a cropland class (rainfed and irrigated) user’s accuracy of 79%. At bioclimatic zones scale, results show that land proportion occupied by rainfed agriculture increases with annual precipitation up to 1000 mm. The Sudanian zone (600–1200 mm) has the highest proportion of land in agriculture (24%), followed by the Sahelian (200–600 mm) and the Guinean (1200 +) zones for 15% and 4%, respectively. The new West African Sahel dataset is made freely available for applications requiring improved cropland area information for agricultural monitoring and food security applications.
Abstract African pastoralists suffer recurrent droughts that cause high livestock mortality and vulnerability to climate change. The index-based livestock insurance (IBLI) program offers protection against drought impacts. However, the current IBLI design relying on the normalized difference vegetation index (NDVI) may pose limitation because it does not consider the mixed composition of rangelands (including herbaceous and woody plants) and the diverse feeding habits of grazers and browsers. To enhance IBLI, we assessed the efficacy of utilizing distinct browse and grazing forage estimates from woody LAI (LAI W ) and herbaceous LAI (LAI H ), respectively, derived from aggregate leaf area index (LAI A ), as an alternative to NDVI for refined IBLI design. Using historical livestock mortality data from northern Kenya as reference ground dataset, our analysis compared two competing models for (1) aggregate forage estimates including sub-models for NDVI, LAI (LAI A ); and (2) partitioned biomass model (LAI P ) comprising LAI H and LAI W . By integrating forage estimates with ancillary environmental variables, we found that LAI P , with separate forage estimates, outperformed the aggregate models. For total livestock mortality, LAI P yielded the lowest RMSE (5.9 TLUs) and higher R 2 (0.83), surpassing NDVI and LAI A models RMSE (9.3 TLUs) and R 2 (0.6). A similar pattern was observed for species-specific livestock mortality. The influence of environmental variables across the models varied, depending on level of mortality aggregation or separation. Overall, forage availability was consistently the most influential variable, with species-specific models showing the different forage preferences in various animal types. These results suggest that deriving distinct browse and grazing forage estimates from LAI P has the potential to reduce basis risk by enhancing IBLI index accuracy.
The original version of this Data Descriptor incorrectly referenced the “United Nations (UN) Food and Agriculture Organization (FAO) soilGrids250m system”. This has been corrected to “SoilGrids predictions” throughout the text in both the HTML and PDF versions.