The spread of HIV between immune cells is greatly enhanced by cell-cell adhesions called virological synapses, although the underlying mechanisms have been unclear. With use of an infectious, fluorescent clone of HIV, we tracked the movement of Gag in live CD4 T cells and captured the direct translocation of HIV across the virological synapse. Quantitative, high-speed three-dimensional (3D) video microscopy revealed the rapid formation of micrometer-sized “buttons” containing oligomerized viral Gag protein. Electron microscopy showed that these buttons were packed with budding viral crescents. Viral transfer events were observed to form virus-laden internal compartments within target cells. Continuous time-lapse monitoring showed preferential infection through synapses. Thus, HIV dissemination may be enhanced by virological synapse-mediated cell adhesion coupled to viral endocytosis.
Background Despite improved survival for the patients with diffuse large B-cell lymphoma (DLBCL), the prognosis after relapse is poor. The aim was to identify molecular events that contribute to relapse and treatment resistance in DLBCL. Methods We analysed 51 prospectively collected pretreatment tumour samples from clinically high risk patients treated in a Nordic phase II study with dose-dense chemoimmunotherapy and central nervous system prophylaxis with high resolution array comparative genomic hybridization (aCGH) and gene expression microarrays. Major finding was validated at the protein level immunohistochemically in a trial specific tissue microarray series of 70, and in an independent validation series of 146 patients. Results We identified 31 genes whose expression changes were strongly associated with copy number aberrations. In addition, gains of chromosomes 2p15 and 18q12.2 were associated with unfavourable survival. The 2p15 aberration harboured COMMD1 gene, whose expression had a significant adverse prognostic impact on survival. Immunohistochemical analysis of COMMD1 expression in two series confirmed the association of COMMD1 expression with poor prognosis. Conclusion COMMD1 is a potential novel prognostic factor in DLBCLs. The results highlight the value of integrated comprehensive analysis to identify prognostic markers and genetic driver events not previously implicated in DLBCL. Trial Registration ClinicalTrials.gov NCT01502982
AIM:To investigate the expression of thymidylate synthase (TS) and glutathione-s-transferase π (GST-π) in esophageal squamous cell carcinoma and their association with the clinicopathologic characteristics. METHODS:Immunohistochemical methods were used to detect the expression of TS and GST-π in surgically resected formalin-fixed, paraffin-embedded esophageal squamous cell carcinoma (ESCC) tissue sections from 102 patients (median age, 58 years) and in 28 normal esophageal mucosa (NEM) samples.The relationship between TS and GST-π expression and clinicopathologic factors was examined. RESULTS:The expression of TS and GST-π was not statistically significantly associated with age of the patients, tumor size, lymph node metastasis, depth of invasion or tumor stage.TS staining was positive in 17.86% of normal esophageal mucosa and in 42.16% of ESCC samples (P < 0.05).The expression level of TS was not only significantly lower in well-differentiated (21.88%) than in poorly-differentiated carcinomas (51.43%,P < 0.05), but was also significantly higher in samples from male patients (46.51%) than from female patients (18.75%,P < 0.05).GST-π was positively stained in 78.57% of normal esophageal mucosa and in 53.92% of ESCC samples (P < 0.05).The expression level of GST-π was also significantly higher in welldifferentiated carcinomas (65.63%) than in poorlydifferentiated carcinomas (35.00%,P < 0.05). C O N C L U S I O N :T h e e x p re s s i o n o f TS a n d o f GST-π may be used as molecular markers for the characterization of ESCC.Poorly-differentiated cells showed increased expression of TS and reduced expression of GST-π.
Pseudomonas aeruginosa infections of wounds in clinical settings are major complications whose outcomes are influenced by host responses that are not completely understood. Herein we evaluated transcriptomic changes of wounds as they counter P. aeruginosa infection-first active infection, and then chronic biofilm infection. We used the dermal full-thickness, rabbit ear excisional wound model. We studied the wound response: towards acute infection at 2, 6, and 24 hrs after inoculating 106 bacteria into day-3 wounds; and, towards more chronic biofilm infection of wounds similarly infected for 24 hrs but then treated with topical antibiotic to coerce biofilm growth and evaluated at day 5 and 9 post-infection. The wounds were analyzed for bacterial counts, expression of P. aeruginosa virulence and biofilm-synthesis genes, biofilm morphology, infiltrating immune cells, re-epithelialization, and genome-wide gene expression (RNA-Seq transcriptome). This analysis revealed that 2 hrs after bacterial inoculation into day-3 wounds, the down-regulated genes (infected vs. non-infected) of the wound edge were nearly all non-coding RNAs (ncRNAs), comprised of snoRNA, miRNA, and RNU6 pseudogenes, and their down-regulation preceded a general down-regulation of skin-enriched coding gene expression. As the active infection intensified, ncRNAs remained overrepresented among down-regulated genes; however, at 6 and 24 hrs they changed to a different set, which overlapped between these times, and excluded RNU6 pseudogenes but included snRNA components of the major and minor spliceosomes. Additionally, the raw counts of multiple types of differentially-expressed ncRNAs increased on post-wounding day 3 in control wounds, but infection suppressed this increase. After 5 and 9 days, these ncRNA counts in control wounds decreased, whereas they increased in the infected, healing-impaired wounds. These data suggest a sequential and coordinated change in the levels of transcripts of multiple major classes of ncRNAs in wound cells transitioning from inflammation to the proliferation phase of healing.
The combination of platinum and gemcitabine is one of the standard regimens in the treatment of advanced lung squamous carcinoma (LSC). Resistance to gemcitabine is main barrier to the successful treatment of LSC. In this study, we showed that suppression of the Fanconi anemia (FA) pathway increased the sensitivity of two LSC cell lines SK-MES-1 and KLN205 to gemcitabine. Moreover, we found that the CHK1 pathway and the FA pathway are functionally compensatory in the repair of DNA damage in the LSC cell lines. Inactivation of one of the two pathways led to DNA damage, triggering compensatory activation of other pathway. Furthermore, we demonstrated that FANCD2 depletion combined with CHK1 inhibitor MK-8776 significantly potentiated the cytotoxicity of gemcitabine to the two LSC cell lines, compared to individual FANCD2 depletion or MK-8776 treatment. The enhanced effect of gemcitabine-chemosensitization was accompanied by loss of DNA repair function and accumulation of DNA single strand breaks and double strand breaks, in parallel with obvious increase of caspase-3 dependent apoptosis. Our results indicate that the enhancement effect of FANCD2 depletion combined with CHK1 inhibitor in sensitizing the LCS cells to gemcitabine supports the FA pathway and CHK1 as two therapeutic targets for improvement of anti-tumor regimens in treatment of LSC.
The mechanism of cervical ripening in late pregnancy is still unclear. The vaginal microbiome has been reported to correlate with the preterm birth and short cervix in pregnant women. However, the associations between the cervical maturity and the vaginal microbiome are still poorly understood. We aim to analyze the cervicovaginal microflora in women with ripe cervix and in those who are unripe when delivering at term.
Background and AimsOxidative stress plays a key role in the development of metabolic complications associated with obesity, including insulin resistance and the most common chronic liver disease worldwide, nonalcoholic fatty liver disease. We have recently discovered that the microRNA miR-144 regulates protein levels of the master mediator of the antioxidant response, nuclear factor erythroid 2-related factor 2 (NRF2). On miR-144 silencing, the expression of NRF2 target genes was significantly upregulated, suggesting that miR-144 controls NRF2 at the level of both protein expression and activity. Here we explored a mechanism whereby hepatic miR-144 inhibited NRF2 activity upon obesity via the regulation of the tricarboxylic acid (TCA) metabolite, fumarate, a potent activator of NRF2.MethodsWe performed transcriptomic analysis in liver macrophages (LMs) of obese mice and identified the immuno-responsive gene 1 (Irg1) as a target of miR-144. IRG1 catalyzes the production of a TCA derivative, itaconate, an inhibitor of succinate dehydrogenase (SDH). TCA enzyme activities and kinetics were analyzed after miR-144 silencing in obese mice and human liver organoids using single-cell activity assays in situ and molecular dynamic simulations.ResultsIncreased levels of miR-144 in obesity were associated with reduced expression of Irg1, which was restored on miR-144 silencing in vitro and in vivo. Furthermore, miR-144 overexpression reduces Irg1 expression and the production of itaconate in vitro. In alignment with the reduction in IRG1 levels and itaconate production, we observed an upregulation of SDH activity during obesity. Surprisingly, however, fumarate hydratase (FH) activity was also upregulated in obese livers, leading to the depletion of its substrate fumarate. miR-144 silencing selectively reduced the activities of both SDH and FH resulting in the accumulation of their related substrates succinate and fumarate. Moreover, molecular dynamics analyses revealed the potential role of itaconate as a competitive inhibitor of not only SDH but also FH. Combined, these results demonstrate that silencing of miR-144 inhibits the activity of NRF2 through decreased fumarate production in obesity.ConclusionsHerein we unravel a novel mechanism whereby miR-144 inhibits NRF2 activity through the consumption of fumarate by activation of FH. Our study demonstrates that hepatic miR-144 triggers a hyperactive FH in the TCA cycle leading to an impaired antioxidant response in obesity. Oxidative stress plays a key role in the development of metabolic complications associated with obesity, including insulin resistance and the most common chronic liver disease worldwide, nonalcoholic fatty liver disease. We have recently discovered that the microRNA miR-144 regulates protein levels of the master mediator of the antioxidant response, nuclear factor erythroid 2-related factor 2 (NRF2). On miR-144 silencing, the expression of NRF2 target genes was significantly upregulated, suggesting that miR-144 controls NRF2 at the level of both protein expression and activity. Here we explored a mechanism whereby hepatic miR-144 inhibited NRF2 activity upon obesity via the regulation of the tricarboxylic acid (TCA) metabolite, fumarate, a potent activator of NRF2. We performed transcriptomic analysis in liver macrophages (LMs) of obese mice and identified the immuno-responsive gene 1 (Irg1) as a target of miR-144. IRG1 catalyzes the production of a TCA derivative, itaconate, an inhibitor of succinate dehydrogenase (SDH). TCA enzyme activities and kinetics were analyzed after miR-144 silencing in obese mice and human liver organoids using single-cell activity assays in situ and molecular dynamic simulations. Increased levels of miR-144 in obesity were associated with reduced expression of Irg1, which was restored on miR-144 silencing in vitro and in vivo. Furthermore, miR-144 overexpression reduces Irg1 expression and the production of itaconate in vitro. In alignment with the reduction in IRG1 levels and itaconate production, we observed an upregulation of SDH activity during obesity. Surprisingly, however, fumarate hydratase (FH) activity was also upregulated in obese livers, leading to the depletion of its substrate fumarate. miR-144 silencing selectively reduced the activities of both SDH and FH resulting in the accumulation of their related substrates succinate and fumarate. Moreover, molecular dynamics analyses revealed the potential role of itaconate as a competitive inhibitor of not only SDH but also FH. Combined, these results demonstrate that silencing of miR-144 inhibits the activity of NRF2 through decreased fumarate production in obesity. Herein we unravel a novel mechanism whereby miR-144 inhibits NRF2 activity through the consumption of fumarate by activation of FH. Our study demonstrates that hepatic miR-144 triggers a hyperactive FH in the TCA cycle leading to an impaired antioxidant response in obesity.
Abstract Adipocyte hypertrophy and expression of adipokines in subcutaneous adipose tissue (SAT) have been linked to steatosis, nonalcoholic steatohepatitis (NASH) and fibrosis in morbidly obese (BMI ≥ 40 kg/m 2 ) subjects. It is unknown if this is also true for subjects with NAFLD with lesser degrees of obesity (BMI < 35 kg/m 2 ). Thirty-two subjects with biopsy-proven NAFLD and 15 non-diabetic controls matched for BMI underwent fine-needle biopsies of SAT. Adipocyte volume was calculated. RNA-sequencing of SAT was performed in a subset of 20 NAFLD patients. Adipocyte volume and gene expression levels were correlated to the presence of NASH or significant fibrosis. Subjects with NAFLD had larger adipocyte volume compared with controls, (1939 pL, 95% CI 1130–1662 vs. 854 pL, 95% CI 781–926, p < 0.001). There was no association between adipocyte volume and the presence of NASH. Gene expression of adipokines previously described to correlate with NASH in morbid obesity, was not associated with NASH or fibrosis. Our results suggest that persons with NAFLD have larger SAT adipocytes compared with controls and that adipocytes are involved in the pathophysiology of hepatic steatosis in NAFLD. However, adipocyte volume was not associated with NASH or fibrosis in NAFLD subjects with varying degrees of obesity.
Pigmentation during insect development is a primal adaptive requirement. In the silkworm, melanin is the primary component of larval pigments. The rate limiting substrate in melanin synthesis is tyrosine, which is converted from phenylalanine by the rate-limiting enzyme phenylalanine hydroxylase (PAH). While the role of tyrosine, derived from phenylalanine, in the synthesis of fiber proteins has long been known, the role of PAH in melanin synthesis is still unknown in silkworm. To define the importance of PAH, we cloned the cDNA sequence of BmPAH and expressed its complete coding sequence using the Bac-to-Bac baculovirus expression system. Purified recombinant protein had high PAH activity, some tryptophan hydroxylase activity, but no tyrosine hydroxylase activity, which are typical properties of PAH in invertebrates. Because melanin synthesis is most robust during the embryonic stage and larval integument recoloring stage, we injected BmPAH dsRNA into silkworm eggs and observed that decreasing BmPAH mRNA reduced neonatal larval tyrosine and caused insect coloration to fail. In vitro cultures and injection of 4th instar larval integuments with PAH inhibitor revealed that PAH activity was essential for larval marking coloration. These data show that BmPAH is necessary for melanin synthesis and we propose that conversion of phenylalanine to tyrosine by PAH is the first step in the melanin biosynthetic pathway in the silkworm.
Abstract The involvement of circRNAs in β-thalassemia and their actions on fetal hemoglobin (HbF) is unclear. Here, the circRNAs in β-thalassemia carriers with high HbF levels were comprehensively analyzed and compared with those of healthy individuals. Differential expression of 2183 circRNAs was observed and their correlations with hematological parameters were investigated. Down-regulated hsa-circRNA-100466 had a strong negative correlation with HbF and HbA 2 . Bioinformatics was employed to construct a hsa-circRNA-100466‑associated competing endogenous RNA (ceRNA) network to identify hub genes and associated miRNAs. The hsa-circRNA-100466▁miR-19b-3p▁SOX6 pathway was identified using both present and previously published data. The ceRNA network was verified by qRT-PCR analysis of β-thalassemia samples, RNA immunoprecipitation of K562 cell lysates, and dual-luciferase reporter analysis. qRT-PCR confirmed that hsa-circRNA-100466 and SOX6 were significantly down-regulated, while miR-19b-3p was up-regulated. Hsa-circRNA-100466, miR-19b-3p, and SOX6 were co-immunoprecipitated by anti-argonaute antibodies, indicating involvement with HbF induction. A further dual-luciferase reporter assay verified that miR-19b-3p interacted directly with hsa-circRNA-100466 and SOX6. Furthermore, spearman correlation coefficients revealed their significant correlations with HbF. In conclusion, a novel hsa-circRNA-100466▁miR-19b-3p▁SOX6 pathway was identified, providing insight into HbF induction and suggesting targets β-thalassemia treatment.