Abstract The metamorphic history and tectonic evolution of the Qinling Complex is divided into formation and modification stages. During the Proterozoic formation stage, three deformational sequences are recognized. Andalusite–muscovite, sillimanite–muscovite and sillimanite–K‐feldspar zones of amphibolite facies regional metamorphism are earlier than, or synchronous with the first or second phase of folding. Ductile shear zones were formed and Caledonian granites were emplaced during the modification stage. The granites superimposed contact aureoles (garnet–K‐feldspar zone) on the regional metamorphic fabric. Metamorphic reactions, P–T conditions of metamorphism and P–T–t paths were estimated by analysis of mineral textures and standard thermobarometric techniques. The P–T–t path of the Proterozoic tectonometamorphic cycle shows prominent clockwise decompression. The P–T–t path of the Caledonian tectonometamorphic cycle is characterized by an early rise of pressure and temperature, followed by isothermal decompression (rapid uplift) and finally with isobaric cooling. The P–T–t paths of the two tectonometamorphic cycles reflect two major stages of collision and uplift in the evolution of the Qinling orogenic belt during the Proterozoic and Caledonian–Hercynian periods, respectively.