Abstract In the eastern Gulf of Guinea (GG), freshwater originated from rivers discharges into the ocean and high precipitation rate are key contributors to the upper ocean vertical density stratification, and play a key role in modulating local air‐sea interactions as well as biogeochemical cycle. Nevertheless, the dynamics of the GG freshwater plumes remain poorly documented because of the scarcity of historical, in situ observations and the lack of an ad hoc satellite‐based analysis in this region. Recent advances in remote sensing capabilities from the Soil Moisture and Ocean Salinity (SMOS) satellite mission offer unprecedented coverage and spatiotemporal resolution of Sea Surface Salinity (SSS) in the GG. Using SMOS SSS and available in situ measurements, the seasonal variability of freshwater plumes and associated physical mechanisms controlling their seasonal cycle are presented and analyzed. Freshwater plumes in the GG follow two dynamical regimes. They present maximum offshore extension during boreal winter and exhibit minimum signature during summer. In the northeastern GG, SSS variability is mainly explained by high precipitation rate and Niger River runoff during winter, while during late summer, SSS is mainly driven by horizontal advection. In contrast, southeast of GG, freshwater plumes are mainly supplied by Congo River runoff. From September to March, SSS variability is driven by zonal advection, with a major contribution from Ekman wind‐driven currents. During spring‐summer, the observed SSS increase is likely explained by entrainment and vertical mixing. SSS budget and freshwater advection processes are discussed in the context of the shallow stratification induced by freshwater.
Abstract. The estimation of the regional Ocean Heat Content (OHC) is essential for climate analysis and future climate predictions. In this study, we propose a method to estimate and propagate uncertainties in regional OHC changes. The OHC is estimated with space geodetic steric data corrected from salinity variations estimated with in situ measurements. A variance-covariance matrix method is used to propagate uncertainties from space geodetic data to the OHC change. The integrated OHC change over the Atlantic basin is 0.17 W m-2 which represents 21 % of the global OHC trend, with significant trends observed in 52 % of the Atlantic basin. Uncertainties in OHC trends are mainly attributed to manometric sea level change uncertainties. We validate our space geodetic OHC estimates at two test sites, representing the subtropical and subpolar regions of the North Atlantic, highlighting their importance in understanding climate dynamics. Our results show good agreement between space geodetic estimates and in situ measurements in the North Atlantic region. The space geodetic OHC trends reveal a warming pattern in the southern and western parts of the North Atlantic, particularly in the Gulf Stream region, while the northeastern part exhibits cooling trends. Overall, our study provides valuable insights and a new framework to estimate regional OHC change and its uncertainties, contributing to a better understanding of the Earth's climate system and its future projections. The space geodetic OHC change product (version 1.0) is freely available at https://doi.org/10.24400/527896/a01-2022.012 (Magellium/LEGOS, 2022)