Reference EPFL-CONF-221467 URL: http://www.plevin.com.au/swim2016/SWIM%20APCAMM%20Proceedings_A4_Program_web.pdf Record created on 2016-09-26, modified on 2016-09-26
Abstract Spatial and temporal salinity variations in surface water and pore water commonly exist in salt marshes under the combined influence of tidal inundation, precipitation, evapotranspiration, and inland freshwater input. Laboratory experiments and numerical simulations were conducted to investigate how density gradients associated with salinity variations affect pore water flow in the salt marsh system. The results showed that upward salinity (density) gradients could lead to flow instability and the formation of salt fingers. These fingers, varying in size with the distance from the creek, modified significantly the pore water flow field, especially in the marsh interior. While the flow instability enhanced local salt transport and mixing considerably, the net effect was small, causing only a slight increase in the overall mass exchange across the marsh surface. In contrast, downward salinity gradients exerted less influence on the pore water flow in the marsh soil and slightly weakened the surface water and groundwater exchange across the marsh surface. Numerical simulations revealed similar density effects on pore water flow at the field scale under realistic conditions. These findings have important implications for studies of marsh soil conditions concerning plant growth as well as nutrient exchange between the marsh and coastal marine system.
Abstract In this study, we compare the performances of well injection and pond infiltration in controlling seawater intrusion in an unconfined coastal aquifer through two scenario groups: (1) a single injection well versus an elliptic infiltration pond and (2) an injection‐extraction well pair system versus an elliptic infiltration pond‐extraction well system. Comparison is based on quantitative indicators that include the interface toe location, saltwater volume, and maximum net extraction rate (for scenario 2). We introduce a method to determine the maximum net extraction rate for cases where the locations of stagnation points cannot be easily derived. Analytical analysis shows that the performances of injection and infiltration are the same, provided that the pond shape is circular. The examination of scenario group 1 suggests that the shape of the infiltration pond has a minor effect on the interface toe location as well as the reduction in the saltwater volume, given the same total recharge rate. The investigation of scenario group 2 indicates, by contrast, that the maximum net extraction rate increases significantly with the increasing ratio of b to a , where a and b are semiaxes of the ellipse parallel and perpendicular to the coastline, respectively. Specifically, for a typical aquifer assumed, an increase of 40% is obtained for the maximum net extraction when b/a increases from 1/200 to 200. Despite that the study is based on a simplified model, the results provide initial guidance for practitioners when planning to use an aquifer recharge strategy to restore a salinized unconfined coastal aquifer.
Free to read
Submarine groundwater discharge (SGD) is an integral part of the hydrological cycle and represents an important aspect of land-ocean interactions. We used a numerical model to simulate flow and salt transport in a nearshore groundwater aquifer under varying wave conditions based on yearlong random wave data sets, including storm surge events. The results showed significant flow asymmetry with rapid response of influxes and retarded response of effluxes across the seabed to the irregular wave conditions. While a storm surge immediately intensified seawater influx to the aquifer, the subsequent return of intruded seawater to the sea, as part of an increased SGD, was gradual. Using functional data analysis, we revealed and quantified retarded, cumulative effects of past wave conditions on SGD including the fresh groundwater and recirculating seawater discharge components. The retardation was characterized well by a gamma distribution function regardless of wave conditions. The relationships between discharge rates and wave parameters were quantifiable by a regression model in a functional form independent of the actual irregular wave conditions. This statistical model provides a useful method for analyzing and predicting SGD from nearshore unconfined aquifers affected by random waves
The Medium Resolution Spectral Image (MERSI) is a MODIS-like sensor aboard Fengyun-3 satellite. The first version of MERSI aerosol algorithm has been developed based on MODIS dark target (DT) algorithm, with modified models for estimating surface reflectance and an adjusted inland water masking method to release haze aerosols. This study applies MERSI DT algorithm to the global observations from the upgraded MERSI sensor (MERSI-II) on Fengyun-3D. And then, the Aerosol Optical Depth (AOD) results from the year of 2019–2020 are validated against the Aerosol Robotic Network (AERONET) data. In addition, analyses of the spatial distribution and error characteristics of MODIS and MERSI-II retrievals are presented. The overall validation demonstrates that MERSI-II retrievals perform well globally, with a correlation coefficient of 0.877 and 67.1% of matchups within the Expected Error envelope of ± (0.05 + 0.2τ), which are close to the statistic metrics of MODIS products. In addition, MERSI-II and MODIS AODs exhibit similar error trends and error dependence. Moreover, the similar global distribution characteristics of the two AODs are revealed in the retrieval performance at site and regional scales, as well as in the analysis of monthly averages. These findings indicate the success of the ported MERSI algorithm.