Fold and fabric patterns developed within a major Caledonian thrust nappe in NW Scotland reflect a progressive increase in regional D2 strain towards the basal ductile detachment. Within the upper greenschist to lower amphibolite facies thrust sheet, the main gently east-dipping foliations and SE-plunging transport-parallel lineations maintain a broadly similar orientation over c. 600 km2. Associated main phase, thrust-related folds (F2) are widely developed, and towards the base of the thrust sheet display progressive tightening and increasing curvilinearity of fold hinges ultimately resulting in sheath folds. Secondary folds (F3) are largely restricted to high-strain zones and are interpreted as flow perturbation folds formed during non-coaxial, top-to-the-NW ductile thrusting. These features are consistent with a structural model that incorporates plane strain pure-shear flattening with a superimposed and highly variable simple shear component focused into high-strain zones. The increase in strain over a distance of 30 km across strike is similar to the increasing deformation observed when structures are traced along strike to the north, and which are apparently related to proximity to basement-cover contacts. A U–Pb zircon age of 415±6 Ma obtained from a syn-D2 meta-granite confirms that regional deformation occurred during the Scandian phase of the Caledonian orogeny.
Abstract Fold and fabric patterns developed within a major Caledonian thrust nappe in NW Scotland reflect a progressive increase in regional D 2 strain towards the basal ductile detachment. Within the upper greenschist to lower amphibolite facies thrust sheet, the main gently east-dipping foliations and SE-plunging transport-parallel lineations maintain a broadly similar orientation over c . 600 km 2 . Associated main phase, thrust-related folds (F 2 ) are widely developed, and towards the base of the thrust sheet display progressive tightening and increasing curvilinearity of fold hinges ultimately resulting in sheath folds. Secondary folds (F 3 ) are largely restricted to high-strain zones and are interpreted as flow perturbation folds formed during non-coaxial, top-to-the-NW ductile thrusting. These features are consistent with a structural model that incorporates plane strain pure-shear flattening with a superimposed and highly variable simple shear component focused into high-strain zones. The increase in strain over a distance of 30 km across strike is similar to the increasing deformation observed when structures are traced along strike to the north, and which are apparently related to proximity to basement-cover contacts. A U–Pb zircon age of 415±6 Ma obtained from a syn-D 2 meta-granite confirms that regional deformation occurred during the Scandian phase of the Caledonian orogeny.
Precambrian sedimentary successions are difficult to date and correlate. In the Scottish Highlands, potential correlations between the thick, undeformed siliciclastic ‘Torridonian’ successions in the foreland of the Caledonian Orogen and the highly deformed and metamorphosed siliciclastic Moine succession within the Caledonian Orogen have long intrigued geologists. New and detailed mapping of the Neoproterozoic Altnaharra Formation (Morar Group, lowest Moine Supergroup) in Sutherland has discovered low-strain zones exhibiting well-preserved sedimentary features. The formation comprises 3–5 km of coarse, thick-bedded psammite with abundant nested trough and planar cross-bedding bedforms, defining metre-scale channels. Palaeocurrent directions are broadly unimodal to the NNE–ENE. We interpret the Altnaharra Formation as high-energy, braided fluvial deposits. The Altnaharra Formation and the unmetamorphosed, Neoproterozoic Applecross–Aultbea formations (Torridon Group) are similar in terms of lithology, stratigraphical thickness, sedimentology, geochemistry, detrital zircon ages and stratigraphical position on Archaean basement. Depositional age constraints for both successions overlap and are coeval with late Grenvillean orogenic activity. Detrital zircons imply similar source regions from the Grenville Orogen. The Morar and Torridon groups can thus be correlated across the Caledonian Moine Thrust and are best explained as parts of a single, large-scale, orogen-parallel foreland basin to the Grenville Orogen.