Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun′s catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60–1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun's catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years.
Accurate and reliable dating of paleosols, animal remains, and artifacts is of crucial importance in reconstructing environmental change and understanding the interrelationship between human activities and natural environments. Dating different materials in the same sample can help resolve problems such as soil carbon sources and carbon storage state. Conventional radiocarbon dating of soil (inorganic and organic matter) and accelerator mass spectrometry (AMS) dating of animal remains (fossil bones and teeth) result in different ages for materials from the same sample position in a typical loess section at Xinglong Mountain, Yuzhong County, Gansu Province in NW China. Inorganic matter is ∼3400 yr older than organic matter, 4175 ± 175 cal BP to 3808 ± 90 cal BP. A 1610-yr difference between the 14 C ages of fossils (animal bones and teeth) and soil organic matter suggests that a depositional hiatus exists in the studied profile. The varying 14 C ages of fossils and soil organic and inorganic matter have important implications for paleoclimate reconstructions from loess sections. It is critical to consider the meaning of the variable 14 C ages from different material components from the same sample position in terms of soil organic and inorganic carbon storage, vegetation history reconstruction, archaeology, and the study of ancient civilizations.
Abstract. Sensitivity analysis methods have recently received much attention for identifying important uncertainty sources (or uncertain inputs) and improving model calibrations and predictions for hydrological models. However, it is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models (PBHMs) because of its variant uncertainty sources and high computational cost. Therefore, a global sensitivity analysis method that is capable of simultaneously analyzing multiple uncertainty sources of PBHMs and providing quantitative sensitivity analysis results is still lacking. In an effort to develop a new tool for overcoming these weaknesses, we improved the hierarchical sensitivity analysis method by defining a new set of sensitivity indices for subdivided parameters. A new binning method and Latin hypercube sampling (LHS) were implemented for estimating these new sensitivity indices. For test and demonstration purposes, this improved global sensitivity analysis method was implemented to quantify three different uncertainty sources (parameters, models, and climate scenarios) of a three-dimensional large-scale process-based hydrologic model (Process-based Adaptive Watershed Simulator, PAWS) with an application case in an ∼ 9000 km2 Amazon catchment. The importance of different uncertainty sources was quantified by sensitivity indices for two hydrologic outputs of interest: evapotranspiration (ET) and groundwater contribution to streamflow (QG). The results show that the parameters, especially the vadose zone parameters, are the most important uncertainty contributors for both outputs. In addition, the influence of climate scenarios on ET predictions is also important. Furthermore, the thickness of the aquifers is important for QG predictions, especially in main stream areas. These sensitivity analysis results provide useful information for modelers, and our method is mathematically rigorous and can be applied to other large-scale hydrological models.
Lacustrine deposits at the margin of the southeastern Tibetan Plateau (SETP) are sensitive indicators for the evolution of the southwest Asian monsoon (SWAM) during the Quaternary. Thus, they can provide insight into the Quaternary climatic history and their relationship with global climatic changes. The results of the geochemical analysis of the Xiaozhongdian Basin section at the SETP suggest that SiO2 had the highest content of the major elements followed by Al2O3. The order of the abundance of the major elements was generally as follows: SiO2>Al2O3>Fe2O3>CaO>MgO>K2O>TiO2>Na2O>MnO2. The geochemical proxies, such as chemical index of alteration (CIA), the index of compositional variability (ICV) and (CaO+K2O+Na2O)/Al2O3, indicate the weak chemical weathering and the aridification of the margin of the SETP during the Heinrich events. In addition, the aridification of the SETP during the Heinrich events may be closely related to the cold signals transmitted from the high latitudes of the North Atlantic to the TP, and the effect caused the cooling effect to be very strong on the TP as a result of the upper-level westerly jet stream and then reduced the suction action associated with the SWAM, thus accelerating the drying rate of Xiaozhongdian Basin, which was amplifying the degree of drought in Heinrich events.