Mantle polymict breccias sampled by kimberlite magmas are complex mixtures of mantle minerals and rock clasts, cemented together by olivine, phlogopite, orthopyroxene, ilmenite, rutile and sulphides. Because of the kimberlite-like texture (i.e. mineral clasts of diverse origin and composition set in a magmatic matrix) and the large geochemical heterogeneity preserved in polymict breccias, these rocks are believed to derive from primitive or precursor kimberlite magmas. Therefore, the study of such xenoliths can provide constraints on the processes occurring in the mantle during the early stages of kimberlite ascent, and possibly on the composition of kimberlite melts. To constrain the petrogenesis of these unusual rocks, we have studied two samples of polymict breccia from the Bultfontein kimberlite (Kimberley, South Africa) and compared our results with published data for other polymict breccias. The most abundant phase in the matrix of the studied samples is olivine with a narrow range in Mg# (∼88–89), but variable Ni–Mn–Ca contents. Similar compositions are characteristic of magmatic olivine in the Bultfontein and nearby De Beers kimberlites. Orthopyroxene is the dominant phase in the matrix of polymict breccias surrounding clinopyroxene clasts, which, like the other silicate mineral clasts, are highly resorbed. The matrix orthopyroxene exhibits variable compositions, with significant enrichment in Ca, Na, Cr, Sr, Ba and light rare earth elements in the grains adjacent to clinopyroxene. The other main matrix phases (phlogopite, ilmenite and rutile) also display variable compositions. Matrix olivine hosts primary carbonate-rich inclusions similar to those observed in polymict breccia ilmenite. These inclusions were previously interpreted as an alkali-carbonate melt trapped during ilmenite growth. This alkali-carbonate melt may represent the parental melt to the matrix minerals of the polymict breccias. The variable composition of the matrix minerals is attributed to rapid, small-scale (centimetre to millimetre) variations in the melt composition owing to clast dissolution, possibly coupled with wall-rock assimilation, closely followed by fast cooling. Partial digestion of silicate porphyroclasts increased the Si content of the matrix melt, thus allowing crystallization of orthopyroxene. Further arguments in favour of a genetic relationship between polymict breccias and kimberlite magmas are provided by (1) similar Hf isotope compositions of polymict breccia ilmenite and South African kimberlites, (2) overlapping olivine compositions in polymict breccias and the host Bultfontein kimberlite, and (3) the occurrence of alkali-carbonate inclusions in polymict breccia and kimberlite minerals. Polymict breccias are interpreted as failed kimberlite intrusions, which metasomatized the magmatic conduit through which subsequent pulses of kimberlite magmas ascended. These wall-rock interactions would limit reactions between later pulses of kimberlite melt and mantle wall-rocks, thus enhancing the ability of kimberlite magmas to reach the surface.
The lowermost succession of lavas in the Proterozoic Ventersdorp Supergroup contains light weathering ocelli up to 15 cm in diameter which occur in layers of a darker weathering volcanic material. Some ocelli appear to merge, and discrete light weathering layers may be the ultimate end-stage of this coalescence. Alternatively, coexisting magmas in the neck of the volcano may have been erupted in varying proportions, and turbulence during flow caused spalling of large drops of the lighter weathering material into the other. Several lines of field evidence suggest that two distinct liquids coexisted and were rapidly quenched after eruption. Chemical data for ocelli and matrix are consistent with the hypothesis of liquid immiscibility. The differences in compositions between the coexisting pairs of liquids are small and it is suggested that the original magmas must have been close to the consulute composition.