Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottom-up approach to citizen science exemplifies the projects' value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs.
Abstract Climate change is already transforming the seascapes of our oceans by changing the energy availability and the metabolic rates of the organisms. Among the ecosystem-engineering species that structure the seascape, marine animal forests (MAFs) are the most widespread. These habitats, mainly composed of suspension feeding organisms, provide structural complexity to the sea floor, analogous to terrestrial forests. Because primary and secondary productivity is responding to different impacts, in particular to the rapid ongoing environmental changes driven by climate change, this paper presents some directions about what could happen to different MAFs depending on these fast changes. Climate change could modify the resistance or resilience of MAFs, potentially making them more sensitive to impacts from anthropic activities (i.e. fisheries and coastal management), and vice versa, direct impacts may amplify climate change constraints in MAFs. Such changes will have knock-on effects on the energy budgets of active and passive suspension feeding organisms, as well as on their phenology, larval nutritional condition, and population viability. How the future seascape will be shaped by the new energy fluxes is a crucial question that has to be urgently addressed to mitigate and adapt to the diverse impacts on natural systems.
Clarke, B.; Thurstan, R.H.; and Yates, K.L, 2016. Stakeholder perceptions of a coastal marine protected area, . In: Vila-Concejo, A.; Bruce, E.; Kennedy, D.M., and McCarroll, R.J. (eds.), Proceedings of the 14th International Coastal Symposium (Sydney, Australia). Journal of Coastal Research, Special Issue, No. 75, pp. 622–626. Coconut Creek (Florida), ISSN 0749-0208.Marine protected areas (MPAs) are an increasingly utilised marine and coastal management tool, with rates of designation rising steeply over the last twenty years. MPAs are most commonly designated for biological conservation objectives and the management is thus focused primarily on meeting conservation goals, with associated monitoring programs gathering data on a narrow suite of biological indicators. However, MPAs also have a wide range of potential social and economic impacts and the ability to meet the goals of an MPA is highly influenced by the often unmonitored perceptions and buy-in of local stakeholders. Here we examine a range of stakeholder perceptions concerning a coastal MPA in South Australia. We conducted semi-structured interviews with individuals engaged in the MPA's planning and designation process, as well as those involved with its ongoing management. We explored their understanding of the purpose of the MPA, whether they thought the MPA was successful and the future management challenges the MPA might face. In particular, we focused on eliciting from stakeholders indicators they thought should be used to monitor the ongoing performance of the MPA. Perceptions varied between stakeholder groups, however, the majority of respondents highlighted the importance of socio-economic factors in the ongoing performance of the MPA. The vast majority of them suggested both biological and socio-economic indicators that should be incorporated into monitoring programs. Our findings highlight the need for MPA planning and management, when defining goals and developing monitoring programs, to be mindful to incorporate social and economic, as well as, biological indicators.
Abstract As a discipline, marine historical ecology (MHE) has contributed significantly to our understanding of the past state of the marine environment when levels of human impact were often very different from those today. What is less widely known is that insights from MHE have made headway into being applied within the context of present-day and long-term management and policy. This study draws attention to the applied value of MHE. We demonstrate that a broad knowledge base exists with potential for management application and advice, including the development of baselines and reference levels. Using a number of case studies from around the world, we showcase the value of historical ecology in understanding change and emphasize how it either has already informed management or has the potential to do so soon. We discuss these case studies in a context of the science–policy interface around six themes that are frequently targeted by current marine and maritime policies: climate change, biodiversity conservation, ecosystem structure, habitat integrity, food security, and human governance. We encourage science–policy bodies to actively engage with contributions from MHE, as well-informed policy decisions need to be framed within the context of historical reference points and past resource or ecosystem changes.
Abstract Increasing the size and number of marine protected areas (MPAs) is widely seen as a way to meet ambitious biodiversity and sustainable development goals. Yet, debate still exists on the effectiveness of MPAs in achieving ecological and societal objectives. Although the literature provides significant evidence of the ecological effects of MPAs within their boundaries, much remains to be learned about the ecological and social effects of MPAs on regional and seascape scales. Key to improving the effectiveness of MPAs, and ensuring that they achieve desired outcomes, will be better monitoring that includes ecological and social data collected inside and outside of MPAs. This can lead to more conclusive evidence about what is working, what is not, and why. Eight authors were asked to write about their experiences with MPA effectiveness. The authors were instructed to clearly define “effectiveness” and discuss the degree to which they felt MPAs had achieved or failed to be effective. Essays were exchanged among authors and each was invited to write a shorter “counterpoint.” The exercise shows that, while experiences are diverse, many authors found common ground regarding the role of MPAs in achieving conservation targets. This exchange of perspectives is intended to promote reflection, analysis, and dialogue as a means for improving MPA design, assessment, and integration with other conservation tools.
Oyster reef ecosystems used to form significant components of many temperate and subtropical inshore coastal systems but have suffered declines globally, with a concurrent loss of services. The early timing of many of these changes makes it difficult to determine restoration targets which consider interdecadal timeframes, community values and shifted baselines. On the Australian continent, however, the transition from Indigenous (Aboriginal) to Westernized resource use and management occurred relatively recently, allowing us to map social-ecological changes in detail. In this study, we reconstruct the transformations in the Sydney rock oyster (Saccostrea glomerata) wild commercial industry of central and southeast Queensland, and by extension its reef ecosystems, as well as the changing societal and cultural values related to the presence and use of the rock oyster through time. By integrating data from the archaeological, anthropological and fisheries literature, government and media accounts, we explore these transformations over the last two centuries. Before the 1870s, there was a relative equilibrium. Aboriginal peoples featured as sole traders to Europeans, supplying oysters and becoming a substantial component of the industry's labour pool. Effectively, Australia's commercial oyster industry arose from Aboriginal-European trade. During this initial phase, there was still a relative abundance of wild oyster, with subtidal oyster reef structures present in regions where oysters are today absent or scarce. By contrast, these reefs declined by the late 19th century, despite production of oysters increasing due to continued large-scale oyster recruitment and the expansion of oyster cultivation in intertidal areas. Production peaked in 1891, with successive peaks observed in regions further north. During the 1890s, flood events coupled with land-use changes introduced large quantities of silt into the system, which likely facilitated an increase in oyster pests and diseases, ultimately decreasing the carrying capacity of the system. Today oyster production in this region is less than one-tenth of historical peak production. Many cultural heritage components have also been lost. Indigenous management is now very minor due to the massive decimation of Aboriginal populations and their respective practices. Yet, we found strong cultural attachment to midden remains and oyster production continues within Indigenous communities, with considerable broader community support. This study highlights the value of conducting thorough analysis of early media accounts as a means for reconstructing historical resource decline and management. It further demonstrates the application of historical information and context for contemporary management, protection and restoration of much-altered coastal social-ecological systems.
Abstract Marine functional connectivity (MFC) refers to the flows of organic matter, genes, and energy that are caused by the active and passive movements of marine organisms. Occurring at various temporal and spatial scales, MFC is a dynamic, constantly evolving global ecological process, part of overall ecological connectivity, but with its own distinct and specific patterns. Geological and historical archives of changes in the distributions, life histories, and migration of species can provide baselines for deciphering the long-term trends (decadal to millions of years) and variability of MFC. In this food-for-thought paper, we identify the different types of geohistorical data that can be used to study past MFC. We propose resources that are available for such work. Finally, we offer a roadmap outlining the most appropriate approaches for analysing and interpreting these data, the biases and limitations involved, and what we consider to be the primary themes for future research in this field. Overall, we demonstrate how, despite differences in norms and limitations between disciplines, valuable data on ecological and societal change can be extracted from geological and historical archives, and be used to understand changes of MFC through time.
Abstract Marine historical research has made progress in bridging the gap between science and policy, but examples in which it has been effectively applied remain few. In particular, its application to aquaculture remains unexplored. Using actual examples of natural resource management in the state of South Australia, we illustrate how historical data of varying resolution can be incorporated into aquaculture planning. Historical fisheries records were reviewed to identify data on the now extinct native oyster Ostrea angasi fishery throughout the 1800 and early-1900s. Records of catch, number of boats fishing, and catch per unit effort (cpue) were used to test fishing rates and estimate the total quantity of oysters taken from select locations across periods of time. Catch quantities enabled calculation of the minimum number of oysters per hectare for two locations. These data were presented to government scientists, managers, and industry. As a result, interest in growing O. angasi increased and new areas for oyster aquaculture were included in regulatory zoning (spatial planning). Records of introductions of the non-native oyster Saccostrea glomerata, Sydney rock oysters, from 1866 through 1959, were also identified and used to evaluate the biosecurity risk of aquaculture for this species through semi-quantitative risk assessment. Although applications to culture S. glomerata in South Australia had previously been declined, the inclusion of historical data in risk assessment led to the conclusion that applications to culture this species would be accepted. The examples presented here have been effectively incorporated into management processes and represent an important opportunity for the aquaculture industry in South Australia to diversify. This demonstrates that historical data can be used to inform planning and support industry, government, and societies in addressing challenges associated with aquaculture, as well as natural resource management more broadly.
Abstract Bivalve habitat restoration is growing in geographic extent and scale globally. While addressing the wide‐scale loss of these biogenic habitats is still a key motivation behind restoration efforts, stakeholders and funders are increasingly drawn to shellfish restoration for the many ecosystem services these habitats provide. There is clear evidence for the provision of ecosystem services from species targeted for restoration in the USA, in particular Crassostrea virginica . Ecosystem services, however, remain largely unquantified or even undescribed for the majority of other species targeted for restoration. A structured review of the literature was undertaken and supplemented by expert knowledge to identify which ecosystem services are documented in the following other bivalve species targeted for restoration: Ostrea edulis , Ostrea angasi , Crassostrea rhizophorae , Perna canaliculus , Modiolus modiolus , Mytilus edulis , Mytilus platensis , Crassostrea gigas , Ostrea denselamellosa , Crassostrea ariakensis , and Crassostrea sikamea. Key knowledge gaps in quantifying ecosystem services and the ecosystem engineering properties of habitat‐building bivalves contributing to the provision of ecosystem services were identified. Ecosystem services with the potential to be widely applicable across bivalve habitat‐building species were identified. Though there is evidence that many of the ecosystem engineering properties that underpin the provision of ecosystem services are universal, the degree to which services are provided will vary between locations and species. Species‐specific, in situ , studies are needed in order to avoid the inappropriate transfer of the ecosystem service delivery between locations, and to further build support and understanding for these emerging targets of restoration.