<p>The Lewisian Gneiss Complex (LGC) in NW Scotland, a classic example of Archean lower crust, is mostly composed of deformed and metamorphosed tonalite&#8211;trondhjemite&#8211;granodiorite (TTG) gneisses, gneissose granite sheets, and subordinate mafic, ultramafic, and metasedimentary lithologies. It has been traditionally subdivided into three regions that are interpreted to record discrete ages and metamorphic histories, and which are separated by crustal-scale shear zones. A smear of concordant U&#8211;Pb zircon ages from the granulite-facies central region has been interpreted to record metamorphic resetting of earlier magmatic and granulite facies metamorphic ages during a subsequent high-temperature metamorphic event. Here, we present U&#8211;Pb and Hf isotope data collected via laser-ablation split-stream (LASS) analyses of zircon cores from twenty-seven felsic meta-igneous rocks from the northern, southern, and central regions of the LGC, as well as U&#8211;Pb data from zircon rims within most of those samples.</p><p>In samples from the northern and southern regions, the crystallization age (i.e., from zircon cores) was calculated from the upper-intercept age, yielding age range of 2.82-2.63 Ga for the northern, and 3.11&#8211;2.63 Ga for the southern region. Zircons in these samples generally have thin or no rims, suggesting an absence of a prolonged high-grade (granulite facies) metamorphic event in those regions. In the central region, zircon cores yield U&#8211;Pb crystallization ages between ca. 3.0 Ga and 2.7 Ga, while zircon rims define a continuous spread of ages from ca. 2.8 to 2.4 Ga. Overall, the central region exhibits a continuous and overlapping smear of zircon core and rim ages, suggesting a protracted thermal event in which high-ultrahigh temperature conditions were maintained for >200 m.y., and that discrete magmatic and metamorphic &#8216;events&#8217; are difficult to identify. Nevertheless, an estimation of the crystallization age of each sample is crucial for interpreting their Lu&#8211;Hf isotopic signature. Zircon cores from the tonalite&#8211;trondhjemite gneisses have broadly chondritic compositions with a range of calculated mean initial &#949;Hf of +2.5 to &#8211;1.2, potentially reflecting a mixture of juvenile material and reworked crust, with one outlier at &#949;Hf<sub>i</sub> = +4.5 perhaps indicating a renewed influx of juvenile magma. Granite gneisses also have near-chondritic values, although the range is larger and the two youngest granite gneisses have slightly sub-chondritic &#949;Hf<sub>i</sub> (&#8211;1.5 and &#8211;2.5), which indicates that pre-existing crust was involved in their formation. Since there is no significant difference in the Hf isotopic composition between rocks from the three regions, or between the TTG and granite gneisses, we suggest that the broadly chondritic &#949;Hf<sub>i</sub> in most of our samples reflects mixing of both depleted mantle and evolved crust during their generation. Despite the similarity of the U-Pb and &#949;Hf data from the three regions, the data do not allow to unambiguously discriminate whether the LGC is composed of different levels of a once continuous Archean continent or discrete microcontinents that were amalgamated in the late Archean to Paleoproterozoic.</p>
Abstract Despite extensive investigation, the tectono‐thermal evolution of the Archean crust in the Lewisian Gneiss Complex in NW Scotland (LGC) is debated. Most U–Pb zircon geochronological and metamorphic studies have focused on rocks from the central region of the mainland LGC, where granulite facies assemblages associated with the oldest (Badcallian) tectono‐metamorphic event at c. 2.75 Ga are overprinted by younger amphibolite facies assemblages related to the Inverian (c. 2.5 Ga) and subsequent Laxfordian (c. 1.9–1.65 Ga) tectono‐thermal events. In the southern and northern regions of the mainland LGC, deformation and metamorphism associated with the Laxfordian event are pervasive, although the timing and conditions are poorly constrained. Here, we present new field, petrographic and structural data, U–Pb zircon and titanite geochronology and phase equilibrium modelling of amphibolite samples from the northern and southern regions. Our field observations show that in both regions, pre‐Laxfordian structures are significantly reworked by steep NW‐striking fabrics that are themselves pervasively overprinted by co‐axial deformation and amphibolite facies metamorphism related to the Laxfordian event. In situ U–Pb titanite geochronology yields Laxfordian ages of 1853 ± 20 Ma in the southern region (P = 6–8 kbar and T = 640–690°C) and 1750 ± 20 Ma and 1776 ± 10 Ma in the northern region (P = 6–7.5 kbar and T = 740–760°C). While U–Pb dating of zircon rims from felsic gneisses in the central region shows a dominant Inverian metamorphic overprint at c. 2500 Ma, zircon rims in felsic gneisses from the northern and southern regions commonly yield Laxfordian dates as young as c. 1800 Ma. Combined, the results support the idea that, during the Palaeoproterozoic, the central region of the LGC acted as low‐strain domain, in which intense deformation and metamorphism were restricted to crustal‐scale shear zones. By contrast, in the southern and northern regions, early (c. 1.85 Ga) and late (c. 1.75 Ga) Laxfordian deformation and fluid‐mediated metamorphism were much more pervasive and at higher P–T conditions than previously proposed. The diachronous Laxfordian evolution of the southern and northern regions indicate that they reflect early and late snapshots of collisional to transpressional tectonics in the mainland LGC. The long‐lasting Laxfordian evolution documents the collision of the Rae and North Atlantic cratons during the Palaeoproterozoic amalgamation of the supercontinent Nuna, with implications for the palaeogeographic configuration of NW Scotland during Palaeoproterozoic Nuna.
Abstract The investigation of key minerals including zircon, apatite, titanite, rutile, monazite, xenotime, allanite, baddeleyite and garnet can retain critical information about petrogenetic and geodynamic processes and may be utilized to understand complex geological histories and the dynamic evolution of the continental crust. They act as small but often robust petrochronological capsules and provide information about crustal evolution, from local processes to plate tectonics and supercontinent cycles. They offer us insights into processes of magmatism, sedimentation, metamorphism and alteration, even when the original protolith is not preserved. In situ techniques have enabled a more in-depth understanding of trace element behaviour in these minerals within their textural context. This has led to more meaningful ages for many stages of geological events. New developments of analytical procedures have further allowed us to expand our petrochronological toolbox while improving precision and accuracy. Combining multiple proxies with multiple minerals has contributed to new interpretations of the crustal history of our planet.