The blast- and earth-fill dam of the Kambarata 2 hydropower station is situated in the seismically active Central Tien Shan region of the Kyrgyz Republic. More than 70% of the dam volume was produced during a blast event on December 22, 2009. In 2010–2011, dam construction was completed after earth filling on top of the blasted material and installing concrete and clay screens together with bentonite grouts. A geophysical survey had been completed in 2012–2013, mainly to monitor the resistivities inside the dam. The geophysical survey completed on the Kambarata 2 dam site showed lower resistivity zones in the earth fill and relatively higher resistivities in the blast-fill material. Topographic, geophysical and piezometric inputs had been compiled within a 3D geomodel constructed with GOCAD software. This model was compared with the design structure of the dam in order to define the upper limits of the underlying alluvium, the deposited blast fill, earth fill and top gravel materials (represented by the dam surface). The central cross-section of this model was extrapolated over the full length of the main dam profile. On the basis of a calibrated hydrogeological model and known geomechanical properties of the materials, dam stability calculations were completed for different scenarios considering different reservoir levels and varying seismic conditions. Some of these scenarios indicated a critical vulnerability of the dam, e.g., if impacted by a horizontal seismic acceleration of Ah = 0.3 g and a vertical seismic acceleration Av = 0.15 g, with an estimated return period of 475 years. As a general conclusion, it was noted that this case study can be used as an example for surveys on much larger natural – landslide or moraine – dams. A series of geophysical methods (e.g., electrical and electro-magnetic techniques, seismic and microseismic measurements) can be applied to investigate even very deep dam structures. These methods have the advantage over classical direct prospecting techniques, such as drilling, of using equipment that is much lighter and thus more easily transportable and applicable in difficult terrain. Furthermore, they can provide continuous information over wider areas. This specific application to a blast-fill dam allows us to better outline the strengths and weaknesses of the exploration types and geomodels as a series of investigated parameters can be verified more easily than for natural dams.
Abstract. Central Asia is an area characterized by complex tectonics and active deformation; the related seismic activity controls the earthquake hazard level that, due to the occurrence of secondary and tertiary effects, also has direct implications for the hazard related to mass movements such as landslides, which are responsible for an extensive number of casualties every year. Climatically, this region is characterized by strong rainfall gradient contrasts due to the diversity of climate and vegetation zones. The region is drained by large, partly snow- and glacier-fed rivers that cross or terminate in arid forelands; therefore, it is also affected by a significant river flood hazard, mainly in spring and summer seasons. The challenge posed by the combination of different hazards can only be tackled by considering a multi-hazard approach harmonized among the different countries, in agreement with the requirements of the Sendai Framework for Disaster Risk Reduction. This work was carried out within the framework of the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) project as part of a multi-hazard approach and is focused on the first landslide susceptibility analysis at a regional scale for Central Asia. To this aim the most detailed landslide inventories, covering both national and transboundary territories, were implemented in a random forest model, together with several independent variables. The proposed approach represents an innovation in terms of resolution (from 30 to 70 m) and extension of the analyzed area with respect to previous regional landslide susceptibility and hazard zonation models applied in Central Asia. The final aim was to provide a useful tool for land use planning and risk reduction strategies for landslide scientists, practitioners, and administrators.