In 2020 the fuel sulphur limit in international shipping was reduced from 3.5 to 0.5 wt%. Three adaptive measures dominate: (i) increased exhaust gas cleaning in the maritime industry enabling continued use of high-sulphur fuel oil, (ii) increased refining output ratio of low-sulphur fuels, and iii) increased use of blended fuels. As (i) and (ii) are insufficient to comply with the new demand, refiners will resort to (iii), which requires increased crude oil throughput. Extracted crude oil will typically oxidize completely over longer time periods, so increased crude oil throughput is synonymous with increased CO2 emissions of up to 323 Mton in 2020, corresponding to ∼1% of the total global CO2 emissions from fossil fuels. Transferring demand from low-value to high-value oil products cause indirect CO2 emissions, and vice versa. CO2 emissions can be mitigated by prioritizing demand reduction according to oil product value starting with the most valuable products.
European Union policy on soil threats and soil protection has prioritized new research to address global soil threats. This research draws on the methodology of Critical Zone Observatories (CZOs) to focus a critical mass of international, multidisciplinary expertise at specific field sites. These CZOs were selected as part of an experimental design to study soil processes and ecosystem function along a hypothesized soil life cycle—from incipient soil formation where new parent material is being deposited, to highly degraded soils that have experienced millennia of intensive land use. Further CZOs have been selected to broaden the range of soil environments and data sets to test soil process models that represent the stages of the soil life cycle. The scientific methodology for this research focuses on the central role of soil structure and soil aggregate formation and stability in soil processes. Research methods include detailed analysis and mathematical modeling of soil properties related to aggregate formation and their relation to key processes of reactive transport, nutrient transformation, and C and food web dynamics in soil ecosystems. Within this program of research, quantification of soil processes across an international network of CZOs is focused on understanding soil ecosystem services including their quantitative monetary valuation within the soil life cycle. Further experimental design at the global scale is enabled by this type of international CZO network. One example is a proposed experiment to study soil ecosystem services along planetary‐scale environmental gradients. This would allow scientists to gain insight into the responses of soil processes to increasing human pressures on Earth's critical zone that arise through rapidly changing land use and climate.
The aim of this study is to evaluate and quantify the impacts of different biogas and related policies on the agricultural sector as well as their performance in terms of climate change mitigation and associated costs. To do so we coupled the partial equilibrium approach simulating the market clearing process with the perspective of Life Cycle Assessment of GHG applying it to the well-documented Lombardy case. Results show that the recent Italian biogas policy – prompting manure utilization and reducing the average subsidy per kWh – effectively increased the environmental sustainability of the system, which only now seems able to counteract global warming. Synergies are observed when the recent Common Agricultural Policy greening reform is simultaneously considered by the model.
In recent years, a growing interest from consumers to know the origins and contents of foods has put alternative choices, such as organic foods and dietary changes, on the agenda. Dietary choices are important to address, as many studies find that activities related to food production account for nearly 20–30% of anthropogenic greenhouse gas (GHG) emissions. Nonetheless, while GHG emissions are important, often other environmental impact categories are not considered in the assessment of the sustainability of different foods, diets and choices. This study aims to quantify the implications of dietary choices for Swedish food consumption on a broad range of environmental impact categories using life cycle assessment to provide insight into the impacts, and potential tradeoffs, associated with certain food products and dietary choices. Scenarios are used to assess the implications of diets with reduced meat, increased Swedish food consumption, increased organic foods, vegan and semi-vegetarian diets. The results indicate that tradeoffs could be possible with certain dietary choices. Increasing Swedish food production and consumption may lead to lower impacts for all impact categories by reducing imports, although limitations in growing season and availability of foods in Sweden allows only for minor increases. The results also indicate that large reductions of greenhouse gas emissions are possible by reducing meat consumption, i.e., by halving meat consumption and through vegan and vegetarian diets. Nonetheless, an increase in vegetable, legume and fruit products may lead to a potential increase in human and ecosystem toxicity. Diets based on nutritional guidelines, show reductions in all impact categories, as these guidelines call for an increase in vegetables and fruits and a reduction in meat consumption. An increase in organic foods showed no significant change in climate impact, although toxicity potential was reduced significantly. Increasing consumption of organic foods may also lead to a reduction in biodiversity damage potential, and if all food is produced organically, it risks increasing eutrophication and land use.
The number of publications on environmental footprint indicators has been growing rapidly, but with limited efforts to integrate different footprints into a coherent framework. Such integration is important for comprehensive understanding of environmental issues, policy formulation and assessment of trade-offs between different environmental concerns. Here, we systematize published footprint studies and define a family of footprints that can be used for the assessment of environmental sustainability. We identify overlaps between different footprints and analyse how they relate to the nine planetary boundaries and visualize the crucial information they provide for local and planetary sustainability. In addition, we assess how the footprint family delivers on measuring progress towards Sustainable Development Goals (SDGs), considering its ability to quantify environmental pressures along the supply chain and relating them to the water-energy-food-ecosystem (WEFE) nexus and ecosystem services. We argue that the footprint family is a flexible framework where particular members can be included or excluded according to the context or area of concern. Our paper is based upon a recent workshop bringing together global leading experts on existing environmental footprint indicators.