Abstract MS‐MU‐012, a 15.5 g clast from the Almahata Sitta polymict ureilite, is the first known plagioclase‐bearing main group ureilite. It is a coarse‐grained (up to 4 mm), equilibrated assemblage of 52% olivine (Fo 88), 13% orthopyroxene (Mg# 89.2, Wo 4.5), 11% augite (Mg# 90.2, Wo 37.3), and 14% plagioclase (An 68), plus minor metal and sulfide. The plagioclase grains have been secondarily remelted and internally recrystallized, but retain primary external morphologies. Melt inclusions occur in olivine. Rounded chadocrysts of olivine and orthopyroxene are enclosed in augite grains. In terms of texture, mineralogy, major and minor element mineral compositions, and oxygen isotopes, MS‐MU‐012 is virtually identical to the archetypal Hughes‐type main group ureilites, with the significant addition of primary plagioclase. We conclude that MS‐MU‐012 formed as a cumulate in a common lithologic unit with the Hughes‐type ureilites. Based on reconstructed compositions of melts trapped in olivine, orthopyroxene, and augite in the Hughes‐type samples, we infer that the parent magma of the Hughes unit originated as a late melt in the incremental melting of the ureilite parent body (UPB), near the end of the melting sequence, but was not completely extracted from the mantle like earlier melts and was emplaced in an intrusive body. MELTS calculations indicate that olivine began to crystallize at ~1260 °C, followed shortly thereafter by co‐crystallization of orthopyroxene and augite. Plagioclase began to crystallize at ~1170–1180 °C. Graphite was buoyant in the melt and became heterogeneously distributed in flotation cumulates. Residual silicate liquid was extracted from the cumulate pile and could have crystallized to form the “labradoritic melt lithology” (with plagioclase of An ~68‐35), which is partially preserved as clasts in polymict ureilites. The final equilibration temperature recorded by the Hughes unit was ~1140–1170 °C, just before catastrophic disruption of the UPB. MS‐MU‐012 provides a critical missing link in the differentiation history of this asteroid.
Angrites are a series of differentiat-ed meteorites, extremely silica undersaturated and with unusally high Ca and Al contents [1]. They are thought to originate from a small planetesimal parent body of ~ 100-200 km in radius ([2-3]), can be either plutonic (i.e., cumulates) or volcanic (often referred to as quenched) in origin, and their old formation ages (4 to 11 Myr after CAIs) have made them prime anchors to tie the relative chronologies inferred from short-lived radionuclides (e.g., Al-Mg, Mn-Cr, Hf-W) to the absolute Pb-Pb clock [4]. They are also the most vola-tile element-depleted meteorites available, displaying a K-depletion of a factor of 110 relative to CIs.
Abstract Ureilites are carbon‐rich ultramafic achondrites that have been heated above the silicate solidus, do not contain plagioclase, and represent the melting residues of an unknown planetesimal (i.e., the ureilite parent body, UPB). Melting residues identical to pigeonite‐olivine ureilites (representing 80% of ureilites) have been produced in batch melting experiments of chondritic materials not depleted in alkali elements relative to the Sun’s photosphere (e.g., CI, H, LL chondrites), but only in a relatively narrow range of temperature (1120 ºC–1180 ºC). However, many ureilites are thought to have formed at higher temperature (1200 ºC–1280 ºC). New experiments, described in this study, show that pigeonite can persist at higher temperature (up to 1280 ºC) when CI and LL chondrites are melted incrementally and while partial melts are progressively extracted. The melt productivity decreases dramatically after the exhaustion of plagioclase with only 5–9 wt% melt being generated between 1120 ºC and 1280 ºC. The relative proportion of pyroxene and olivine in experiments is compared to 12 ureilites, analyzed for this study, together with ureilites described in the literature to constrain the initial Mg/Si ratio of the UPB (0.98–1.05). Experiments are also used to develop a new thermometer based on the partitioning of Cr between olivine and low‐Ca pyroxene that is applicable to all ureilites. The equilibration temperature of ureilites increases with decreasing Al 2 O 3 and Wo contents of pyroxene and decreasing bulk REE concentrations. The UPB melted incrementally, at different f O 2 , and did not cool significantly (0 ºC–30 ºC) prior to its disruption. It remained isotopically heterogenous, but the initial concentration of major elements (SiO 2 , MgO, CaO, Al 2 O 3 , alkali elements) was similar in the different mantle reservoirs.
Abstract The composition of basaltic melts in equilibrium with the mantle can be determined for several Martian meteorites and in‐situ rover analyses. We use the melting model MAGMARS to reproduce these primary melts and estimate the bulk composition and temperature of the mantle regions from which they originated. We find that most mantle sources are depleted in CaO and Al 2 O 3 relative to models of the bulk silicate Mars and likely represent melting residues or magma ocean cumulates. The concentrations of Na 2 O, K 2 O, P 2 O 5 , and TiO 2 are variable and often less depleted, pointing to the re‐fertilization of the sources by fluids and low‐degree melts, or the incorporation of residual trapped melts during the crystallization of the magma ocean. The mantle potential temperatures of the sources are 1400–1500°C, regardless of the time at which they melted and within the range of the most recent predictions from thermochemical evolution models.
Abstract Martian basalts identified by rover in‐situ analyses and the study of meteorites represent a direct link to the melting process in the planet's interior and can be used to reconstruct the composition of the mantle and estimate its temperature. Experimentally calibrated numerical models are powerful tools to systematically search for the mantle compositions and melting conditions that can produce melts similar to primary basalts. However, currently available models are not suitable for modeling the melting of FeO‐rich peridotites. In this study, we present experiments performed at 1.0 and 2.4–2.6 GPa on a primitive Martian mantle with various P 2 O 5 contents. We use the new experiments together with a comprehensive database of previous melting experiments to calibrate a new model called MAGMARS. This model can reproduce the experimental melt compositions more accurately than Gibbs free energy minimization software (e.g., pMELTS) and can simulate near‐fractional polybaric melting of various mantle sources. In addition, we provide an updated thermobarometer that can estimate the P – T melting conditions of primary melts and can be used as a prior step to constrain the input parameters of the MAGMARS melting model. We apply MAGMARS to estimate the source composition of the Adirondack‐class basalts and find that melting a depleted mantle, at 2.3–1.7 GPa ( T p = 1390 ± 40°C) can best explain their bulk composition and K 2 O/Na 2 O ratio. MAGMARS represents a fast and accurate alternative to calculate the composition of the Martian primary melts and can be used as a stand‐alone package or integrated with geodynamical models or other independent modeling software.