In this study, we report transcription of genes involved in aerobic and anaerobic benzene degradation pathways in a benzene-degrading denitrifying continuous culture. Transcripts associated with the family Peptococcaceae dominated all samples (21-36% relative abundance) indicating their key role in the community. We found a highly transcribed gene cluster encoding a presumed anaerobic benzene carboxylase (AbcA and AbcD) and a benzoate-coenzyme A ligase (BzlA). Predicted gene products showed >96% amino acid identity and similar gene order to the corresponding benzene degradation gene cluster described previously, providing further evidence for anaerobic benzene activation via carboxylation. For subsequent benzoyl-CoA dearomatization, bam-like genes analogous to the ones found in other strict anaerobes were transcribed, whereas gene transcripts involved in downstream benzoyl-CoA degradation were mostly analogous to the ones described in facultative anaerobes. The concurrent transcription of genes encoding enzymes involved in oxygenase-mediated aerobic benzene degradation suggested oxygen presence in the culture, possibly formed via a recently identified nitric oxide dismutase (Nod). Although we were unable to detect transcription of Nod-encoding genes, addition of nitrite and formate to the continuous culture showed indication for oxygen production. Such an oxygen production would enable aerobic microbes to thrive in oxygen-depleted and nitrate-containing subsurface environments contaminated with hydrocarbons.
An anaerobic mixed culture enriched over 16 transfers (1/10) from Saale river sediment reductively dehalogenated 1,2,4- and 1,2,3-trichlorodibenzo-p-dioxin (TrCDD) to di- and monochlorinated congeners in the presence of pyruvate (or lactate) and fumarate as cosubstrates. Besides TrCDD, tetrachloroethene and 1,2,3-trichlorobenzene were dechlorinated. Dioxin dehalogenation was sensitive to pasteurization, but was not remarkably influenced by inhibitors of methanogens, sulfate-reducing bacteria or Gram-positive bacteria. The rate of 1,3-dichlorodibenzo-p-dioxin formation increased with rising initial concentrations of 1,2,4-TrCDD (1-250 microM) from 0.05 to 5.4 micromol l(-1) day(-1). Two isolates, belonging to Sulfurospirillum and Trichococcus, did not show reductive dehalogenation. 16S rDNA-targeted methods further revealed the presence of Acetobacterium, Desulfitobacterium, Desulfuromonas and Dehalococcoides. Nested polymerase chain reaction (PCR) indicated the presence of Dehalococcoides in highest most probable number (MPN) dilutions that were positive for dioxin dechlorination.
River systems are exposed to anthropogenic disturbances, including chemical pollution and eutrophication. This may affect the phylogenetic diversity as well as the abundance of various functional groups within sediment-associated microbial communities. To address such potential effects, mesocosms filled with Ebro delta sediment covered with river water were exposed to chlorinated organic compounds or to a high nutrient concentration as used for fertilization. Changes in the abundance of selected functional microbial groups, i.e. total aerobes, nitrate, sulfate and iron reducers, organohalide-respiring microorganisms as well as methanogens, were examined using culture-dependent most probable number and culture-independent PCR methods targeting phylogenetic as well as functional gene markers. It was concluded that the abundance of functional groups was neither affected by pollution with 1,2-dichloroethane and tetrachloroethene nor by elevated nutrient loads, although changes in the bacterial community composition were observed using 16S rRNA gene-targeted fingerprint techniques. This study reinforced the notion that complementary culture-dependent and molecular methods, focusing on different fractions of the microbial community (cultivable, active or total), should be used in combination for a comprehensive description of phylogenetic diversity and functional potential.
An anaerobic microbial community was enriched in a chemostat that was operated for more than 8 years with benzene and nitrate as electron acceptor. The coexistence of multiple species in the chemostat and the presence of a biofilm, led to the hypothesis that benzene-degrading species coexist in a syntrophic interaction, and that benzene can be degraded in syntrophy by consortia with various electron acceptors in the same culture. The benzene-degrading microorganisms were identified by DNA-stable isotope probing with [U-(13) C]-labelled benzene, and the effect of different electron donors and acceptors on benzene degradation was investigated. The degradation rate constant of benzene with nitrate (0.7 day(-1) ) was higher than reported previously. In the absence of nitrate, the microbial community was able to use sulfate, chlorate or ferric iron as electron acceptor. Bacteria belonging to the Peptococcaceae were identified as dominant benzene consumers, but also those related to Rhodocyclaceae and Burkholderiaceae were found to be associated with the anaerobic benzene degradation process. The benzene degradation activity in the chemostat was associated with microbial growth in biofilms. This, together with the inhibiting effect of hydrogen and the ability to degrade benzene with different electron acceptors, suggests that benzene was degraded via a syntrophic process.
Bacteria from an anaerobic enrichment reductively removed chlorine from the ortho- position of 2,3,6-trichlorobenzoic acid (2,3,6-TBA) producing 2,5-dichlorobenzoate (2,5-DBA). The strictly aerobic bacterium Pseudomonas aeruginosa JB2 subsequently used 2,5-DBA as a growth substrate in the presence of oxygen. The anaerobic dechlorinating microbial population was grown with P. aeruginosa JB2 in continuous culture. Inside the liquid culture, a nylon netting, on a stainless-steel support, contained vermiculite particles to provide a strictly anaerobic environment within the aerated culture. Complete mineralization of 2,3,6-TBA depended on the extent of oxygen input into the reactor. Under strictly anaerobic conditions 2,5-DBA and Cl− were produced stoichiometrically through the reductive dechlorination of 2,3,6-TBA. This process of reductive dechlorination was not inhibited by (moderate) aeration resulting in an O2-concentration of 0.3–0.5 μM in the culture liquid.
Source zones containing tar, a dense non-aqueous phase liquid (DNAPL), can contaminate groundwater for centuries. A common occurrence of tar is at former Pintsch gas factories. Little is known about the composition and fate of contaminants dissolving from Pintsch gas tar DNAPL. In this study, we determined the composition and water-soluble characteristics of mobile aromatic hydrocarbons and their biodegradation metabolites in the DNAPL contaminated groundwater at a former Pintsch gas tar plant. We assessed the factors that determine the fate of observed groundwater contaminants. Measured values of density (1.03-1.06 kg/m3) and viscosity (18.6-39.4 cP) were found to be relatively low compared to common coal tars. Analysis showed that unlike common coal tars phenanthrene is the primary component rather than naphthalene. Moreover, it was found that Pintsch gas tar contains a relatively high amount of light molecular aromatic hydrocarbon compounds, such as benzene, toluene, ethylbenzene and xylenes (BTEX). Less commonly reported components, such as styrene, ethyltoluenes, di-ethylbenzene, 1,2,4,5-tetramethylbenzene, were also detected in water extracts from Pintsch gas tar. Moreover, 46 relatively hydrophilic metabolites were found within the tar samples. Metabolites present within the tar suggest biodegradation of mobile aromatic Pintsch gas tar compounds occurred near the DNAPL. Based on eleven detected suspect metabolites, a novel anaerobic biodegradation pathway is proposed for indene. Overall, our findings indicate that Pintsch gas tar has higher invasive and higher flux properties than most coal tars due to its relatively low density, low viscosity and, high content of water-soluble compounds. The partitioning of contaminants from multi-component DNAPL into the aqueous phase and re-dissolution of their slightly less hydrophobic metabolites back from the aqueous phase into the DNAPL is feasible and demonstrates the complexity of assessing degradation processes within a source zone.