Borehole instability in naturally fractured rocks poses significant challenges to drilling. Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure (Pw) and pore pressure (Pp) during drilling, which may cause wellbore instability. However, the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses, which may yield significant errors and misleading predictions. In addition, only limited factors were analyzed, and the fracture distribution was oversimplified. In this paper, the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM (distinct element method) and DFN (discrete fracture network) method. It provides estimates of the effect of fracture strength weakening, wellbore pressure, in situ stresses, and sealing efficiency on borehole stability. The results show that mud intrusion and weakening of fracture strength can damage the borehole. This is demonstrated by the large displacement around the borehole, shear displacement on natural fractures, and the generation of fracture at shear limit. Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure, which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations. A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore. Moreover, the effect of sealing natural fractures on maintaining borehole stability is verified in this study, and the increase in sealing efficiency reduces the radial invasion distance of drilling mud. This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations, which can consider the discrete fracture network, mud intrusion, and associated weakening of fracture strength. The information provided by the numerical approach (e.g. displacement around the borehole, shear displacement on fracture, and fracture at shear limit) is helpful for managing wellbore stability and designing wellbore-strengthening operations.
Deepwater shallow sediment is less-consolidated, with a rock mechanical behavior similar to saturated soil. It is prone to borehole shrinkage and downhole leakage. Assume the deepwater shallow sediments are homogeneous, isotropic, and ideally elastoplastic materials, and formation around the borehole is divided into elastic and plastic zone. The theories of small deformation and large deformation are, respectively, adopted in the elastic and plastic zone. In the plastic zone, Mohr–Coulomb strength criterion is selected. The stress and deformation distributions in these two zones, and the radius of plastic zone are derived. The collapse pressure calculation formula of deepwater shallow sediments under the control of different shrinkage rates is obtained. With the introduction of excess pore pressure theory in soil mechanics, the distribution rule of excess pore pressure in these two zones is obtained. Combined with hydraulic fracturing theory, the fracture mechanism of shallow sediments is analyzed and the theoretical formula of fracture pressure is given. The calculation results are quite close to the practically measured results. So the reliability of the theory is confirmed.
Exploring and developing oil and gas in deepwater field is an important trend of the oil and gas industry. Development of deepwater oil and gas fields from a platform always requires a number of directional wells or extended reach wells targeting to different depth of water in various azimuth. Drilling of these wells is mostly associated with a series of wellbore instability problems that are not encountered in onshore or shallow water drilling. In the past decades, a number of studies on wellbore stability have been conducted. However, few of the models are specific for wellbore stability of the inclined deepwater wellbores. In this work, a comprehensive wellbore stability model considering poroelastic and thermal effects for inclined wellbores in deepwater drilling is developed. The numerical method of the model is also presented. The study shows that for a strike-slip stress regime, the wellbore with a low inclination poses more risk of wellbore instability than the wellbore with a high inclination. It also shows that cooling the wellbore will stabilize the wellbore while excessive cooling could cause wellbore fracturing, and the poroelastic effect could narrow the safe mud weight window. The highest wellbore collapse pressure gradients at all of the analyzed directions are obtained when poroelastic effect is taken into account meanwhile the lowest wellbore fracture pressure gradients at all of the analyzed directions are obtained when both of poroelastic effect and thermal effect are taken into account. For safe drilling in deepwater, both of thermal and poroelastic effects are preferably considered to estimate wellbore stability. The model provides a practical tool to predict the stability of inclined wellbores in deepwater drilling.
Rock drillability is a comprehensive index that indicates the ease of drilling a hole in the rock mass, which is a main basis for the design of drilling bits, the optimization of drilling operational parameters, and the prediction of rate of penetration. This paper established a conversion relationship between mechanical specific energy measured from micro-drilling tests and mechanical specific energy measured from scratch tests, based on the consistency of rock breaking mechanism between these two types of tests. By incorporating the methodology of calculating rock drillability grade of polycrystalline diamond compact bits, a new mathematical model for predicting rock drillability of polycrystalline diamond compact bits is developed. Subsequently, a new method for acquiring continuous rock drillability profile by scratching the core surface is developed. A wide range of rocks with different hardness were tested by the proposed scratch method. The results show that the new model has high consistency with the results of laboratory micro-drilling tests. For example, the average errors of sandstone, shale, and carbonate test results are only 7.41%, 8.18%, and 4%, respectively. The new method can fully characterize the effect of mineral composition, cementation strength, and microstructure of rock on drillability. Besides, the new model has high utilization efficiency of expensive core samples because the core usually remains nondestructive after scratch tests.
The cement sheath is the heart of any oil or gas well for providing zonal isolation and well integrity during the life of a well. Loads induced by well construction operations and borehole pressure and temperature changes may lead to the ultimate failure of cement sheath. This paper quantifies the potential of cement failure under mechanically and thermally induced stress during the life-of-well using a coupled thermal–hydrological–mechanical (THM) modeling approach. A staged finite-element procedure is presented considering sequential stress and displacement development during each stage of the well life, including drilling, casing, cementing, completion, production, and injection. The staged model quantifies the stress states and state variables, e.g., plastic strain, damage, and debonding at cement/rock or cement/casing interface, in each well stage from simultaneous action of in-situ stress, pore pressure, temperature, casing pressure, and cement hardening/shrinkage. Thus, it eliminates the need to guess the initial stress and strain state before modeling a specific stage. Moreover, coupled THM capabilities of the model ensure the full consideration of the interaction between these influential factors.