Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.
Deep-sea hydrothermal vents host lush chemosynthetic communities, dominated by endemic fauna that cannot live in other ecosystems. Despite over 500 active vents found worldwide, the Arctic has remained a little-studied piece of vent biogeography. Though located as early as 2001, the faunal communities of the Aurora Vent Field on the ultra-slow spreading Gakkel Ridge remained unsampled until recently, owing to difficulties with sampling on complex topography below permanent ice. Here, we report an unusual cocculinid limpet abundant on inactive chimneys in Aurora (3883–3884 m depth), describing it as Cocculina aurora n. sp. using an integrative approach combining traditional dissection, electron microscopy, molecular phylogeny, and three-dimensional anatomical reconstruction. Gross anatomy of the new species was typical for Cocculina , but it has a unique radula with broad, multi-cuspid rachidian where the outermost lateral is reduced compared to typical cocculinids. A phylogenetic reconstruction using the mitochondrial COI gene also confirmed its placement in Cocculina . Only the second cocculinid found at vents following the description of the Antarctic Cocculina enigmadonta , this is currently the sole cocculinid restricted to vents. Our discovery adds to the evidence that Arctic vents host animal communities closely associated with wood falls and distinct from other parts of the world.
Mora and colleagues show that ongoing greenhouse gas emissions are likely to have a considerable effect on several biogeochemical properties of the world's oceans, with potentially serious consequences for biodiversity and human welfare.
Abstract The composition and structure of megabenthic communities in the Blanes canyon and adjacent open margin (Northwestern Mediterranean) were studied. The aim was to assess the effect of the canyon and commercial fishing intensity on the community composition and structure of benthic megafauna by (i) describing the megabenthic community composition, (ii) quantifying faunal abundance and biomass and (iii) describing community structure with MDS analyses and biodiversity indices. The results are compared between three sites (canyon head, canyon wall and open margin) located between 435 m and 700 m. Samples were collected using a commercial bottom trawl between April 2003 and March 2004. These sites are exploited by the local fishing fleet that targets the rose shrimp Aristeus antennatus . A total of 131 megabenthic species were identified from the three sites, with fishes and decapod crustaceans being the most speciose, most abundant and of higher biomass. The species richness, abundance and biomass of non‐crustacean invertebrates were low. There were no significant differences in total abundance and biomass between the three sites. However, community structure analysis suggests that the open margin community is significantly different from the canyon head and canyon wall, with a lower species richness, lower diversity and lower evenness. The open margin community also reflects a higher degree of disturbance compared to the two canyon habitats. The results indicate that there is a canyon effect on the community structure of benthic megafauna, but this may be modulated by differing fishing pressure, which adds an additional factor to margin heterogeneity.
Abundance, biomass and diversity patterns of bathyal and abyssal Mediterranean megafauna (fishes and invertebrates) were analyzed in the western Balearic Sea, the western Ionian Sea and the eastern Ionian Sea.Sampling was conducted with a Otter-trawl Maireta System (OTMS) at depths ranging from 600 to 4000 m.A series of ecological indicators were computed: total abundance and biomass, Margalef species richness, Shannon-Wiener diversity and Pielou's index of evenness.A multidimensional scaling was applied, indicating that the megafauna communities were grouped by depth, while geographic area had a less defined influence.Margalef richness declined with depth in all three areas, but more steeply in the western Ionian Sea.Pielou's evenness behaved differently in the three zones, showing a V-shaped curve in the eastern Ionian while showing a decreasing pattern in the other two areas.At lower slope depths, massive presence of the fishes Alepocephalus rostratus in the western basin and Bathypterois mediterraneus in the central basin caused a sharp reduction in evenness.