Abstract Understanding people’s perceptions of the environment, drinking water issues, and protecting and preserving water resources is of great importance. This study aims to assess and compare the perceptions of the general public ( n = 414), post‐secondary students ( n = 103), and water professionals ( n = 104) in Oklahoma on water issues in the state. To address these goals, a 53‐item paper questionnaire was first administered to a randomly sampled mailing list of Oklahoma residents. As a follow up to the initial survey, post‐secondary students at Oklahoma State University were sampled in addition to Oklahoma water professionals at regional conferences. Respondents ranged from 18 to over 65 years old, with all three demographics agreeing the top water priority to be clean drinking water. The majority were satisfied with their home water supply and felt it was safe to drink, while they were not sure of the quality of ground and/or surface water. Age was a key factor in information delivery and learning preferences as the older participants favored print material versus the younger demographic interest in technology. Data collected via this study provide insight into the perceptions, priorities, and learning preferences of these three populations. Despite our finding that clean water is a priority in Oklahoma, regardless of demographic, results suggest more education and outreach is needed to provide additional information regarding water in Oklahoma.
Excessive levels of fecal indicator bacteria are a major cause of water quality impairment. Grazing and its management may significantly impact bacteria concentrations; however, other sources can contribute to water quality issues both in the presence and absence of cattle, thus confounding results. In this study, we utilize Bacteroides markers to evaluate bacteria loading from cattle versus background sources in runoff from rotationally grazed and ungrazed pastures and how grazing management, timing of runoff in relation to grazing events, and stocking rate affect Bacteroides marker (AllBac and BoBac) levels and ratios and their relation to E. coli concentrations in runoff at the small watershed scale. The data suggest that the AllBac and BoBac levels were not significantly impacted by grazing management or stocking rate; however, the timing of runoff events in relation to grazing events significantly impacted the levels of these markers found in runoff. Furthermore, the BoBac/AllBac ratio confirmed that fecal contamination present in runoff when sites were destocked for over two weeks largely originated from sources other than cattle. Thus, the magnitude and proportion of cattle impacts on fecal indicator bacteria in edge-of-field runoff were dramatically reduced shortly after de-stocking. However, background sources continued to contribute significant concentrations of E. coli.
As small-scale animal feeding operations work to manage their byproducts and avoid regulation, they need practical, cost-effective methods to reduce environmental impact. One such option is using vegetative treatment areas (VTAs) with perennial grasses to treat runoff; however, research is limited on VTA effectiveness as a waste management alternative for smaller operations. This study evaluated the efficiencies of VTAs in reducing bacteria and nutrient runoff from small-scale swine operations in three counties in Central Texas. Based on 4 yr of runoff data, the Bell and Brazos VTAs significantly reduced loads and concentrations of E. coli and nutrients (except NO3-N) and had treatment efficiencies of 73–94%. Most notably, the Bell VTA reduced loads of E. coli, NH4-N, PO4-P, total N, and total P similar to that of the background (control). In spite of significant reductions, runoff from the Brazos VTA had higher concentrations and loads than the control site, especially following installation of concrete pens and increased pen washing, which produced standing water and increased E. coli and nutrient influx. The Robertson VTA produced fewer significant reductions and had lower treatment efficiencies (29–69%); however, E. coli and nutrient concentrations and loads leaving this VTA were much lower than observed at the Bell and Brazos County sites due to alternative solids management and enclosed pens. Based on these results and previous research, VTAs can be practical, effective waste management alternatives for reducing nutrient and bacteria losses from small-scale animal operations, but only if properly designed and managed.
Abstract This study examines the results of a random sample survey of Texans evaluating citizen awareness, attitudes, and willingness to adopt water conservation practices. The study investigates changes in public attitudes following the most intense one‐year drought on record in Texas by evaluating public perception of water availability, assessing Texans’ attitudes and perceptions regarding drought conditions, and comparing the number of Texans adopting practices to conserve water before and after the drought of 2011. Almost 70% indicated that the likelihood of their area suffering from a prolonged drought was increasing. More than 61% of respondents have changed the way their yard is landscaped and 62% have also adopted new technologies in an effort to conserve water. Overall, responses indicated that Texans are concerned with water availability after experiencing, in 2011, the worst one‐year drought on record, and that the majority of respondents are taking personal action in an effort to conserve water for the future.
Earthworms benefit agriculture by providing several ecosystem services. Therefore, strategies to increase earthworm abundance and activity in agricultural soils should be identified, and encouraged. Lumbricus terrestris earthworms primarily feed on organic inputs to soils but it is not known which organic amendments are the most effective for increasing earthworm populations. We conducted earthworm surveys in the field and carried out experiments in single-earthworm microcosms to determine the optimum food source for increasing earthworm biomass using a selection of crop residues and organic wastes available to agriculture. We found that although farmyard manure increased earthworm populations more than cereal straw in the field, straw increased earthworm biomass more than manures when milled and applied to microcosms. Earthworm growth rates were positively correlated with the calorific value of the amendment and straw had a much higher calorific value than farmyard manure, greenwaste compost, or anaerobic digestate. Reducing the particle size of straw by milling to <3 mm made the energy in the straw more accessible to earthworms. The benefits and barriers to applying milled straw to arable soils in the field are discussed.
Agricultural runoff transports sediments and nutrients that deteriorate water quality erratically, posing a challenge to ground-based monitoring. Satellites provide data at spatial-temporal scales that can be used for water quality monitoring. PlanetScope nanosatellites have spatial (3 m) and temporal (daily) resolutions that may help improve water quality monitoring compared to coarser-resolution satellites. This work compared PlanetScope to Landsat-8 and Sentinel-2 in their ability to detect key water quality parameters. Spectral bands of each satellite were regressed against chlorophyll a, turbidity, and Secchi depth data from 13 reservoirs in Oklahoma over three years (2017–2020). We developed significant regression models for each satellite. Landsat-8 and Sentinel-2 explained more variation in chlorophyll a than PlanetScope, likely because they have more spectral bands. PlanetScope and Sentinel-2 explained relatively similar amounts of variations in turbidity and Secchi Disk data, while Landsat-8 explained less variation in these parameters. Since PlanetScope is a commercial satellite, its application may be limited to cases where the application of coarser-resolution satellites is not feasible. We identified scenarios where PS may be more beneficial than Landsat-8 and Sentinel-2. These include measuring water quality parameters that vary daily, in small ponds and narrow coves of reservoirs, and at reservoir edges.