We apply a deconvolution method to a strong motion data set recorded at the surface and in boreholes in northeast Honshu, Japan. We try to characterize the nonlinear effects of the subsurface soil during strong shaking and show the change of the subsurface velocity structure during the shaking. The deconvolved waveforms reflect the subsurface velocity structure, and their horizontal and vertical components correspond to S and P wave, respectively, traveling from the borehole to the ground surface. The strong motion records with smaller values of peak acceleration do not include significant nonlinear effects, so the deconvolved waveforms of the observed accelerations can be well simulated by the program SHAKE91. For high acceleration motions during the shaking of two separate earthquakes, large reductions of near‐surface velocities are seen. In results for the 2008 Iwate‐Miyagi Nairiku earthquake, the large high‐frequency ground motions over 4 g at one near‐source station caused a nonlinear response of the soil, and the reduction of the average shear wave velocity reached 24%. This corresponds to a stiffness change of over 75%. The soil properties and the stiffness coefficient which changed during the shaking did not fully recover after the shaking, leaving a static change.
Abstract We apply a backprojection analysis to determine the locations and timing of the sources of short‐period (0.5–5 s) energy generated by the 2015 Nepal earthquake. We use data from four different arrays at varying azimuths in Europe, China, Japan, and Australia, which show generally consistent features for the rupture propagation. The sources of strong short‐period energy are generally distributed east of the epicenter at distances of 10–100 km during the time period of 25–55 s after the initiation. The rupture speed was ∼1.0 km/s for the first 20 s then accelerated to ∼3.0 km/s for the remaining 30–40 s. The locations of sources of short‐period energy are close to the down‐dip edge of the fault and are complementary to the areas of large fault slip that occur further up‐dip. The Nepal earthquake might be another example in which regions of large fault slip do not coincide with the source areas of short‐period energy, which are likely associated with the damaging strong ground motions. Online Material: Animations of backprojections for the 2015 Nepal earthquake using four different arrays.
Coulomb stress triggering is examined using well-determined aftershock focal mechanisms and source models of the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake. We tested several slip distributions obtained by inverting onshore GPS-derived coseismic displacements under different a priori constraints on the initial fault parameters. The aftershock focal mechanisms are most consistent with the Coulomb stress change calculated for a slip distribution having a center of slip close to the trench. This demonstrates the capability of the Coulomb stress change to help constrain the slip distribution that is otherwise difficult to determine. Coulomb stress changes for normal-fault aftershocks near the Japan Trench are found to be strongly dependent on the slip on the shallow portion of the fault. This fact suggests the possibility that the slip on the shallow portion of the fault can be better constrained by combining information of the Coulomb stress change with other available data. The case of normal-fault aftershocks near some trench segment which are calculated to be negatively stressed shows such an example, suggesting that the actual slip on the shallow portion of the fault is larger than that inverted from GPS-derived coseismic displacements.
We investigate the early aftershock activity associated with four moderate earthquakes ( M w 6.6–6.7) that occurred recently in Japan. For each aftershock sequence, we examine continuous high-pass filtered seismograms recorded at seismic stations nearby the main fault to identify as many early events as possible. The magnitude of these events is calibrated using aftershocks that are listed in the earthquake catalog of Japan Meteorological Agency (JMA). The analysis of the aftershock decay rates reveals a power-law time dependence with a scaling exponent close to 1.0 that starts from about one minute from the mainshock. Our results demonstrate that the c -value of the Omori–Utsu law is very small, although a lower bound is not established due to completeness problems in the first minute after the mainshock and statistical fluctuations.
Abstract The 2022 volcanic eruption in Tonga caused an unusually large tsunami around the Pacific. It travels with a faster apparent velocity and has larger amplitudes at long distances than what would be expected from a conventional tsunami from the volcanic source. This tsunami was generated by the moving atmospheric Lamb wave and traveled at the speed of the Lamb wave (0.31 km/s). Japanese data showed the amplitude of this first tsunami becomes small when approaching the coast, due to the weaker air‐sea coupling at the shallow depth. This wave split when passing the continental slope, and traveled at the speed of the ocean gravity wave. Therefore, the tsunami observed at the coast is delayed by thousands of seconds from the passage of the Lamb wave. Tsunamis generated by this atmospheric mechanism have not been previously observed by modern digital recording systems and should be considered in the tsunami warning systems.
The Collaboratory for the Study of Earthquake Predictability (CSEP) is a global project aimed at testing earthquake forecast models in a fair environment. Various metrics are currently used to evaluate the submitted forecasts. However, the CSEP still lacks easily understandable metrics with which to rank the universal performance of the forecast models. In this research, we modify a well-known and respected metric from another statistical field, bioinformatics, to make it suitable for evaluating earthquake forecasts, such as those submitted to the CSEP initiative. The metric, originally called a <em>gene-set enrichment score</em>, is based on a Kolmogorov-Smirnov statistic. Our modified metric assesses if, over a certain time period, the forecast values at locations where earthquakes have occurred are significantly increased compared to the values for all locations where earthquakes did not occur. Permutation testing allows for a significance value to be placed upon the score. Unlike the metrics currently employed by the CSEP, the score places no assumption on the distribution of earthquake occurrence nor requires an arbitrary reference forecast. In this research, we apply the modified metric to simulated data and real forecast data to show it is a powerful and robust technique, capable of ranking competing earthquake forecasts.
We performed a damage survey of buildings and carried out microtremor observations in the source region of the 2015 Gorkha earthquake. Our survey area spans the Kathmandu valley and areas to the east and north of the valley. Damage of buildings in the Kathmandu valley was localized, and the percentage of the totally collapsed buildings was less than 5 %. East of the Kathmandu valley, especially in Sindhupalchok district, damage of buildings was more severe. In the center of Chautara and Bahrabise, towns in Sindhupalchok district, the percentage of the totally collapsed houses exceeded 40 %. North of the Kathmandu valley, the damage was moderate, and 20–30 % of the buildings were totally collapsed in Dhunche. Based on the past studies and our microtremor observations near the strong motion station, the H/V spectrum in Kathmandu has a peak at around 0.3 Hz, which reflects the velocity contrast of the deep sedimentary basin. The H/V spectra in Bahrabise, Chautara, and Dhunche do not show clear peaks, which suggests that the sites have stiff soil conditions. Therefore, the more severe damage outside the Kathmandu valley compared with the relatively light damage levels in the valley is probably due to the source characteristics of the earthquake and/or the seismic performance of buildings, rather than the local site conditions.
We estimated the energy radiated by earthquakes in southern California using on-scale very broadband recordings from TERRAscope. The method we used involves time integration of the squared ground-motion velocity and empirical determination of the distance attenuation function and the station corrections. The time integral is typically taken over a duration of 2 min after the P-wave arrival. The attenuation curve for the energy integral we obtained is given by q(r) = cr^(−n)exp(−kr)(r^2 = Δ^2 + h_(ref)^2) with c = 0.49710, n = 1.0322, k = 0.0035 km^(−1), and h_(ref) = 8 km, where Δ is the epicentral distance. A similar method was used to determine M_L using TERRAscope data. The station corrections for M_L are determined such that the M_L values determined from TERRAscope agree with those from the traditional optical Wood-Anderson seismographs. For 1.5 6.5, M_L saturates. The ratio E_S/M_0 (M_0: seismic moment), a measure of the average stress drop, for six earthquakes, the 1989 Montebello earthquake (M_L = 4.6), the 1989 Pasadena earthquake (M_L = 4.9), the 1990 Upland earthquake (M_L = 5.2), the 1991 Sierra Madre earthquake (M_L = 5.8), the 1992 Joshua Tree earthquake (M_L = 6.1), and the 1992 Landers earthquake (M_w = 7.3), are about 10 times larger than those of the others that include the aftershocks of the 1987 Whittier Narrows earthquake, the Sierra Madre earthquake, the Joshua Tree earthquake, and the two earthquakes on the San Jacinto fault. The difference in the stress drop between the mainshock and their large aftershocks may be similar to that between earthquakes on a fault with long and short repeat times. The aftershocks, which occurred on the fault plane where the mainshock slippage occurred, had a very short time to heal, hence a low stress drop. The repeat time of the major earthquakes on the frontal fault systems in the Transverse Ranges in southern California is believed to be very long, a few thousand years. Hence, the events in the Transverse Ranges may have higher stress drops than those of the events occurring on faults with shorter repeat times, such as the San Andreas fault and the San Jacinto fault. The observation that very high stress-drop events occur in the Transverse Ranges and the Los Angeles Basin has important implications for the regional seismic potential. The occurrence of these high stress-drop events near the bottom of the seismogenic zone strongly suggests that these fault systems are capable of supporting high stress that will eventually be released in major seismic events. Characterization of earthquakes in terms of the E_S/M_0 ratio using broadband data will help delineate the spatial distribution of seismogenic stresses in the Los Angeles basin and the Transverse Ranges.