<p>Normal faults are often complex three-dimensional structures comprising multiple sub-parallel segments separated by intact or breached relay zones. In this study we outline geometrical characterisations capturing this 3D complexity and providing a semi-quantitative basis for the comparison of faults and for defining the factors controlling their geometrical evolution. Relay zones are classified according to whether they step in the strike or dip direction and whether the relay zone-bounding fault segments are unconnected in 3D or bifurcate from a single surface. Complex fault surface geometry is then described in terms of the relative numbers of different types of relay zones to allow comparison of fault geometry between different faults and different geological settings. A large database of 87 fault arrays compiled primarily from mapping 3D seismic reflection surveys and classified according to this scheme, reveals the diversity of 3D fault geometry. Analysis demonstrates that mapped fault geometries depend on geological controls, primarily the heterogeneity of the faulted sequence and the presence of a pre-existing structure. For example, relay zones with an upward bifurcating geometry are prevalent in faults that reactivate deeper structures, whereas the formation of laterally bifurcating relays is promoted by heterogeneous mechanical stratigraphy. In addition, mapped segmentation depends on resolution limits and biases in fault mapping from seismic data. In particular, the results suggest that the proportion of bifurcating relay zones increases as data resolution increases. Overall, where a significant number of relay zones are mapped on a single fault, a wide variety of relay zone geometries occurs, demonstrating that individual faults can comprise segments that are both bifurcating and unconnected in three dimensions. Models for the geometrical evolution of fault arrays must therefore account for the full range of relay zone geometries that appears to be a characteristic of all faults.</p>
Defining the origin of ground deformation, which can be a very challenging task, may be approached through several investigative techniques. Ground deformation can originate in response to both natural (e.g., tectonics) and anthropic (e.g., groundwater pumping) contributions. These may either act simultaneously or be somewhat correlated in space and time. For example, the location of structurally controlled basins may be the locus of enhanced human-induced subsidence. In this paper, we investigate the natural and anthropic contributions to ground deformation in the urbanized area of the inner Sarno plain, in the Southern Apennines. We used a multidisciplinary approach based on the collection and analysis of a combination of geomorphological, stratigraphical, structural, hydrogeological, GPS, and DInSAR datasets. Geomorphological, stratigraphical, and structural data suggested the occurrence of a graben-like depocenter, the Sarno basin, bounded by faults with evidence of activity in the last 39 ka. Geodetic data indicated that the Sarno basin also experienced ground deformation (mostly subsidence) in the last 30 years, with a possible anthropogenic contribution due to groundwater pumping. Hydrogeological data suggested that a significant portion of the subsidence detected by geodetic data can be ascribed to groundwater pumping from the alluvial plain aquifer, rather than to a re-activation of faults in the last 30 years. Our interpretation suggested that a positive feedback exists between fault activity and the location of area affected by human-induced subsidence. In fact, fault activity caused the accumulation of poorly consolidated deposits within the Sarno basin, which enhanced groundwater-induced subsidence. The multidisciplinary approach used here was proven to be successful within the study area and could therefore be an effective tool for investigating ground deformation in other urbanized areas worldwide.
It was just like any other morning. I was at the bus stop, on my way to the lab where I was a postdoctoral fellow. But as I watched the people around me—headphones dangling from their ears, eyes cast down, unsmiling faces—something began to stir inside me. They looked unhappy. And, I realized, I was one of them. Suddenly, I could no longer continue with my work life. I turned around, went back to my flat, and booked a one-way ticket to fly home the next morning. I didn't know how long I would be away or what would come next. All I knew was that, even though I loved science and research, what I had been doing wasn't working.
![Figure][1]
ILLUSTRATION: ROBERT NEUBECKER
Over the years, as I dealt with the pressures of finishing my Ph.D. and securing and starting my postdoc, I had grown more competitive. To prove that I was a valuable researcher, I pushed myself to be the first to generate sensational results and to publish in high-impact journals. Those who could have been collaborators became rivals I resented.
But the effect of this competitive streak was exactly the opposite of what I had hoped for. The pressure became overwhelming. When I encountered scientific problems, I thought I had to solve them myself instead of asking for help. I began to feel alone and lost. I became less and less productive. But the culture of academia—prizing competition and individual successes above all else—seemed to reinforce my approach. I was sure that this was not the right time to show any insecurities, so I persevered.
That day at the bus stop, I hit my breaking point. The race had to end.
I emailed my mentors, explaining that I had put myself second and the job first for too long. They came to meet with me that evening. They told me that I wasn't the first academic to feel that way, and that I wouldn't be the last. They agreed that I should take the time I needed to take care of myself. I had managed to put aside a small amount of savings, which could cover my expenses for a few months. So, with my mentors' support and an uncertain future, I left.
Back home, I spent time with family and friends and opened up about my struggles. At first, I was ashamed. But the more I talked about my demons, the more other people—including many friends who were early-career researchers—told me about their own. I also started to receive emails from my workmates. After a few lines asking how I was, many expressed worries about how they were managing the stress of academic life. Vulnerable researchers were poking their heads out of their shells. Our relationships deepened. I began to feel less alone. I had acknowledged that I was susceptible to the ups and downs of academic life—just like everyone else.
Three months after I left so suddenly, I was prepared to go back to work. I was excited to get back to the science that I loved, and I now had a foundation to be more open with my colleagues. I understood that we all struggle sometimes, and that vulnerability and collaboration can be more powerful than competition. It doesn't have to be a zero-sum game.
The first days were difficult. I had naively thought that, right away, everything would be different. But as soon as I was back in that workplace, I felt the stirrings of that old competitiveness. I focused on maintaining my new perspective and being patient as I readjusted. With a bit of time, I understood that, although the place and position were the same, I had changed. I hadn't just accepted my vulnerability; I had embraced it and opened up about it to my colleagues.
As a result, collaboration has replaced competition. Working with others and seeking help doesn't diminish my value or contributions; it means we can all win. Now, when I encounter problems in my work, I frequently discuss them with colleagues, knowing that considering multiple points of view often leads to solutions. I have become more productive. Working relationships are now genuine human ones. I no longer feel like one of the lonely, unhappy people at the bus stop.
[1]: pending:yes
Proyectos
Intramurales 2006 301010, Ministerio de Ciencia e Innovacion
CGL2009-11843-BTE, and the CSIC predoctoral
program Junta para la Ampliacion de Estudios
(JAE-Predoc).
Abstract The 3‐D structure of continental metamorphic core complexes (MCCs) and their coevolution along with the associated extensional detachments are still not well understood. In this study, analysis of a newly acquired high‐resolution 3‐D seismic reflection volume reveals for the first time a well‐imaged MCC in the proximal northern South China Sea (SCS) rifted margin, the Kaiping MCC (KP MCC). These data provide a 3‐D view of the KP MCC and the associated KP detachment fault. The KP MCC is characterized by ascend of ductile midcrustal materials, and it is partially exhumed in the KP9 High. The KP detachment fault displays a domed low‐angle geometry, and is characterized by pronounced NS‐plunging corrugations, among which two megacorrugations of tens of kilometers are revealed. Evidence show that the KP MCC developed according to the classical rolling‐hinge model. A group of secondary normal faults and fractures, which are parallel to the axis of the KP MCC and offset the KP detachment surface at the crest of the MCC, developed in response to inelastic bending during progressive warping of the footwall. The migration of the domal seismic reflection layers provides a visual evidence for the kinematic process of the rolling‐hinge activity, during which the brittle‐ductile transition and the rolling hinge gradually migrate as the detachment fault slips. The origin of the KP MCC in the northern SCS margin is suggested to have been favored by the existence of a pre‐existing midcrustal ductile layer and basement structures within the upper brittle crust.
<p>Studies of mountain belts worldwide have shown that the structural, mechanical, and kinematic evolution of their foreland fold-and-thrust belts are strongly influenced by the structure of the continental margins that are involved in the deformation. The area on and around the island of Taiwan provides an unparalleled opportunity to investigate this because the entire profile of the SE margin of the Eurasian plate, from the shelf in the north to the slope and continent-ocean transition in the south and the offshore, is currently involved in a collision with the Luzon arc on the Philippine Sea plate. Taiwan can, then, provide key insights into how such features as rift basins on the shelf, the extensional faults that form the shelf-slope break in the basement, or the structure of the extended crust and morphology of the sedimentary carapace of the slope can be directly reflected in the structural architecture, the location and pattern of seismicity, topography, and the contemporaneous stress and strain fields of a fold-and-thrust belt. For example, east-northeast striking faults that have been mapped on the necking zone of the Eurasian margin can be traced into the island of Taiwan where they are causing important along-strike changes in various aspects of the structural, mechanical, kinematic, and morphological behavior of the fold-and-thrust belt. In particular, across the upper part of the necking zone there is an abrupt north-south change in structure, an increase in the amount of seismicity, an increase in topography, a rotation of the direction of maximum compressive horizontal stress, of the GPS displacement vectors, the compressional strain rate, and the maximum shear strain rate. These changes are interpreted to be caused by east-northeast striking, dextral strike-slip faulting in the basement that is taking place as a result of the reactivation of pre-existing faults along the upper part of the necking zone. The abrupt southeastward increase in topography across the upper part of the necking zone is the surface expression of the basal thrust of the fold-and-thrust belt ramping down into the basement, with maximum elevations reached in the basement-involved thrust sheets, suggesting a causal link between basement involvement in the thrusting and high topography. On the shelf, the roughly northeast-oriented Hsuehshan Trough is inverting along almost north-south striking basin bounding faults that penetrate into the middle crust and have well-clustered, deep seismicity. There are no substantial differences in the contemporaneous stress and strain field. There is, however, a clear relationship between basement involvement in the thrusting and the development of high topography in the Hsuehshan Range. Only the upper part of the slope is involved in the fold-and-thrust belt in southernmost Taiwan. In this area, there is a reduction of the amount of seismicity and lower topography. The largest part of the corresponding thrust wedge developed in the lower slope is offshore. This work is funded by the Spanish Ministerio de Ciencia, Innovaci&#243;n y Universidades grant PGC2018-094227-B-I00.</p>