We developed a scientific proposal on spectral absorption in remote sensing and a new image-processing method that is purely based on multispectral satellite image spectra to map ultramafic lamprophyre and carbonatite occurrences. The proposed method provides a simple, yet efficient, tool that will help exploration geologists. In this proposal, in which the spectral absorption is applicable to all satellite images obtained in visible, reflected infrared, and thermal infrared spectral wavelength regions, we found that the carbonatites appear white in colour on a greyscale or RGB thermal infrared image obtained in the thermal infrared wavelength region (3–15 μm) due to molecular emission of thermal energy by such carbonate content, particularly the wavelength recorded by the sensor and that the variation of absorption in spectral bands of an outcrop is due to the differences in percentage of carbonate content or the spectral, spatial, radiometric, or temporal resolution of satellite data or the occurrences of carbonatites to incident energy. The results were confirmed by studying the spectral absorption characteristics of carbonatites in selected world occurrences including parts of Batain Nappe, Oman; Fuerteventura (Canary Islands), Spain; Mount Homa, Kenya; Ol Doinyo Lengai, Tanzania; Mount Weld region, (Laverton), Australia, and Phalaborwa region, South Africa, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat Thematic Mapper (TM) satellite data. A subsequent study of visible near-infrared (VNIR) and shortwave infrared (SWIR) ASTER spectral bands of Early Cretaceous alkaline ultramafic rocks of Batain Nappe, along the northeastern margin of Oman to map for the occurrences of carbonatite and aillikite (ultramafic lamprophyres) dikes and plugs, showed their detection mainly by the diagnostic CO3 absorption (2.31–2.33 μm) in ASTER SWIR band 8. The results of image interpretations were verified and confirmed in the field and were validated through the study of laboratory analyses. A few more carbonatite dike occurrences were interpreted directly over the greyscale image of ASTER bands and true-colour interpretations of a Google Earth image along this margin. The carbonatites and aillikite occurrences of the area are rich in apatite, iron oxide, phlogopite, and REE-rich minerals and warrant new exploration projects.
Recent reconnaissance geochemical investigations have unveiled Cryogenian magmatism linked to the compressional accretionary phase, contributing to the growth of the Afif Terrane in the eastern Arabian Shield. The Cryogenian Suwaj intrusive suite, within the Afif Terrane, displays a compositional range from gabbro-diorite to tonalite-granodiorite. The uniform compositional variation is primarily due to magmatic differentiation within parental magma across multiple pulses. The I-type calc-alkaline Suwaj granitoids represent arc-related juvenile materials resulting from the partial melting of a metabasaltic source. The geochemical characteristics of the Suwaj granitoids suggest typical adakite formation resulting from the melting of the basaltic portion of the young, hot oceanic slab. The age correlation between the Halaban ophiolite and the Suwaj Suite aligns with adakite formation in convergent margins. Tectonically, the Suwaj suite's origin is attributed to the subduction of the Paleo-Ad-Dawadmi oceanic slab during microplate amalgamation, reflecting an integral part of the Arabian-Nubian Shield's evolution, underscoring crustal thickening after arc collision.
Abstract The Dhofar 1673, Dhofar 1983, and Dhofar 1984 meteorites are three lunar regolith breccias classified based on their petrography, mineralogy, oxygen isotopes, and bulk chemistry. All three meteorites are dominated by feldspathic lithic clasts; however, impact melt rock clasts and spherules are also found in each meteorite. The bulk chemistry of these samples is similar to other feldspathic highland meteorites with the Al 2 O 3 content only slightly lower than average. Within the lithic clasts, the Mg # of mafic phases versus the anorthite content of feldspars is similar to other highland meteorites and is found to plot intermediate of the ferroan‐anorthositic suite and magnesian suite. The samples lack any KREEP y signature and have only minor indications of a mare basalt component, suggesting that the source region of all three meteorites would have been distal from the Procellarum KREEP Terrane and could have possibly been the Feldspathic Highland Terrane. All three meteorites were found within 500 m of each other in the Dhofar region of Oman. This, together with their similar petrography, stable isotope chemistry, and geochemistry indicates the possibility of a pairing.