The role of post-magmatic processes in the composition of chromitites hosted in ophiolite complexes, the origin of super-reduced phases, and factors controlling the carbon recycling in a supra-subduction zone environment are still unclear. The present contribution compiles the first scanning electron microscope/energy-dispersive (SEM/EDS) data on graphite-like amorphous carbon, with geochemical and mineral chemistry data, from chromitites of the Skyros, Othrys, Pindos, and Veria ophiolites (Greece). The aim of this study was the delineation of potential relationships between the modified composition of chromite and the role of redox conditions, during the long-term evolution of chromitites in a supra-subduction zone environment. Chromitites are characterized by a strong brittle (cataclastic) texture and the presence of phases indicative of super-reducing phases, such as Fe–Ni–Cr-alloys, awaruite (Ni3Fe), and heazlewoodite (Ni3S2). Carbon-bearing assemblages are better revealed on Au-coated unpolished sections. Graphite occurs in association with hydrous silicates (chlorite, serpentine) and Fe2+-chromite, as inclusions in chromite, filling cracks within chromite, or as nodule-like graphite aggregates. X-ray spectra of graphite–silicate aggregates showed the presence of C, Si, Mg, Al, O in variable proportions, and occasionally K and Ca. The extremely low fO2 during serpentinization facilitated the occurrence of methane in microfractures of chromitites, the precipitation of super-reducing phases (metal alloys, awaruite, heazlewoodite), and graphite. In addition, although the origin of Fe–Cu–Ni-sulfides in ultramafic parts of ophiolite complexes is still unclear, in the case of the Othrys chromitites, potential reduction-induced sulfide and/or carbon saturation may drive formation of sulfide ores and graphite-bearing chromitites. The presented data on chromitites covering a wide range in platinum-group element (PGE) content, from less than 100 ppb in the Othrys to 25 ppm ΣPGE in the Veria ores, showed similarity in the abundance of graphite-like carbon. The lack of any relationship between graphite (and probably methane) and the PGE content may be related to the occurrence of the (Ru–Os–Ir) minerals in chromitites, which occur mostly as oxides/hydroxides, and to lesser amounts of laurite, with pure Ru instead activating the stable CO2 molecule and reducing it to methane (experimental data from literature).
The application of Cr isotope compositions to the investigation of magmatic and post-magmatic effects on chromitites is unexplored. This study presents and compiles the first Cr stable isotope data (δ53Cr values) with major and trace element, contents from the Balkan Peninsula, aiming to provide an overview of the compositional variations of δ53Cr values in ophiolite-hosted chromitites and to delineate geochemical constraints controlling the composition of chromitites. The studied chromitites exhibit δ53Cr values ranging from −0.184‰ to +0.159‰, falling in the range of so-called “igneous Earth” or “Earth’s mantle inventory” with values −0.12 ± 0.11‰ to 0.079 ± 0.129‰ (2sd). A characteristic feature is the slightly positively fractionated δ53Cr values of all chromitite samples from Othrys (+0.043 ± 0.03‰), and the occurrence of a wide range of δ53Cr values spanning from positively, slightly negatively to the most negatively fractionated signatures (Pindos, δ53Cr = −0.147 to +0.009‰; Skyros, δ53Cr = −0.078 to +0.159‰). The observed negative trend between δ53Cr values and Cr/(Cr + Al) ratios may reflect a decrease in the δ53Cr values of chromitites with increasing partial melting degree. Alternatively, it may point to processes related to magmatic differentiation, as can be seen in our data from Mikrokleisoura (Vourinos).
Abstract We presented new C and O isotope data of rockforming calcite in terrestrial carbonate deposits from Neogene basins of Attica (Greece), coupled with standard mineralogical and bulk geochemical results. Whereas both isotope datasets [
In this contribution we review the mineralogical characteristics of five new and rare minerals discovered in the Othrys and Vermion ophiolites located in Greece, with the aim to better understand their origin. Three new minerals, namely tsikourasite Mo3Ni2P(1+x) (x < 0.25), grammatikopoulosite NiVP and eliopoulosite V7S8, were found in the chromitite from the Agios Stefanos deposit, whereas arsenotučekite Ni18Sb3AsS16 was discovered in the Eretria (Tsangli) chromium mine, located in the Othrys ophiolite complex. The formation of the new phosphides tsikourasite and grammatikopoulosite and the sulfide eliopoulosite from Agios Stefanos took place after the precipitation of the host chromitite. Very likely, they formed at lower pressure in an extremely low fO2 and reducing environment during the serpentinization that affected the host ophiolite. The origin of arsenotučekite in chromitites coexisting with Fe–Ni–Cu-sulfide mineralization and magnetite at the Eretria (Tsangli) mine, is believed to be related to a circulating hydrothermal system. The most salient feature of theophrastite Ni(OH)2 and associated unnamed (Ni,Co,Mn)(OH)2 with a varying compositional range and a concentrating development, as successive thin layers, composed by fine fibrous crystals. The extremely tiny crystals of these hydroxides and the spatial association of mixed layers of Ni-silicides with theophrastite may reflect the significant role of the interaction process between adjacent layers on the observed structural features. The scarcity in nature of the new minerals reviewed in this paper is probably due to the required extreme physical-chemical conditions, which are rarely precipitated.
This Special Issue “Bio-Geochemistry of Heavy Metals/Metalloids” contains a series of papers that cover a range of topics highlighting the role of microorganisms in ore-forming biochemical processes and potential environmental risk (the first to fourth papers), in the assessment of potentially toxic element contamination using plants and living benthic Foraminifera (the fifth and sixth papers), and in the phytoremediation of contaminated land (the seventh paper) [...]