Abstract Nitrogen transport from terrestrial to aquatic environments could cause water quality deterioration and eutrophication. By sampling in the high- and low-flow periods in a highly disturbed coastal basin of southeast China, hydrochemical characteristics, nitrate stable isotope composition, and the Bayesian mixing model were combined to determine the sources and transformation of nitrogen. Nitrate was the main form of nitrogen. Nitrification, nitrate assimilation, and NH4+volatilization were the main nitrogen transformation processes, whereas denitrification was limited due to the high flow rate and unsuitable physicochemical properties. For both sampling periods, non-point source pollution from the upper to the middle reaches was the main source of nitrogen, especially in the high-flow period. In addition to synthetic fertilizer, atmospheric deposition and sewage and manure input were also major nitrate sources in the low-flow period. Hydrological condition was the main factor determining nitrate transformation in this coastal basin, despite the high degree of urbanization and the high volume of sewage discharge in the middle to the lower reaches. The findings of this study highlight that the control of agricultural non-point contamination sources is essential to pollution and eutrophication alleviation, especially for watersheds that receive high amounts of annual precipitation.
The southeast coastal areas of China have abundant geothermal resources. Most especially, seawater-recharged geothermal systems in the coastal areas have large quantiles of recharge but suffer water salinization and low water temperature. Moreover, the geothermal water development in these areas may induce seawater intrusion. Understanding the genetic patterns of geothermal resources is significant for rational exploration and protection. This study analyzed the hydrochemical and environmental isotopic characteristics of geothermal water, groundwater, and surface water samples collected in the area with geothermal resources in Xiamen Province in the southeast coastal areas of China. Based on this, the recharge of geothermal water circulation and the genetic patterns of geothermal resources were revealed. The results of this study indicate that the geothermal water in mountainous areas and piedmonts in Xiamen is mainly recharged by rainfall infiltration. In contrast, the geothermal water in coastal areas in Xiamen is recharged by seawater mixing to different extents, as indicated by hydrochemical types, isotopic characteristics, and the C1-/Br- ratio of geothermal water. As revealed by the calculation results using the Cl − mixing model, 10 of 13 geothermal fields in Xiamen are recharged by seawater mixing, with a mixing ratio of up to 73.20% in the Pubian geothermal field. After being recharged by rainfall in the low mountainous areas, geothermal water migrates toward deep parts along NW-trending faults. Then, it converges with regional NE-trending deep faults to absorb heat conducted from deep parts to form deep geothermal reservoirs. The deep geothermal reservoirs were estimated to be 185–225°C using the silica-enthalpy mixing model. The geothermal water is mixed with cold water or seawater while rising along faults. The temperature of shallow geothermal reservoirs was estimated to be 71–145°C using SiO 2 geothermometers.