Abstract Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show that KIF13B regulates TZ membrane composition and ciliary SMO accumulation. KIF13B is upregulated during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ, which in turn is required for Shh-induced ciliary SMO accumulation. Thus KIF13B is a novel regulator of ciliary TZ configuration, membrane composition and Shh signalling.
Inversin is a ciliary protein that critically regulates developmental processes and tissue homeostasis in vertebrates, partly through the degradation of Dishevelled (Dvl) proteins to coordinate Wnt signaling in planar cell polarity (PCP). Here, we investigated the role of Inversin in coordinating cell migration, which highly depends on polarity processes at the single-cell level, including the spatial and temporal organization of the cytoskeleton as well as expression and cellular localization of proteins in leading edge formation of migrating cells. Using cultures of mouse embryonic fibroblasts (MEFs) derived from inv−/− and inv+/+ animals, we confirmed that both inv−/− and inv+/+ MEFs form primary cilia, and that Inversin localizes to the primary cilium in inv+/+ MEFs. In wound healing assays, inv−/− MEFs were severely compromised in their migratory ability and exhibited cytoskeletal rearrangements, including distorted lamellipodia formation and cilia orientation. Transcriptome analysis revealed dysregulation of Wnt signaling and of pathways regulating actin organization and focal adhesions in inv−/− MEFs as compared to inv+/+ MEFs. Further, Dvl-1 and Dvl-3 localized to MEF primary cilia, and β-catenin/Wnt signaling was elevated in inv−/− MEFs, which moreover showed reduced ciliary localization of Dvl-3. Finally, inv−/− MEFs displayed dramatically altered activity and localization of RhoA, Rac1, and Cdc42 GTPases, and aberrant expression and targeting of the Na+/H+ exchanger NHE1 and ezrin/radixin/moesin (ERM) proteins to the edge of cells facing the wound. Phosphorylation of β-catenin at the ciliary base and formation of well-defined lamellipodia with localization and activation of ERM to the leading edge of migrating cells were restored in inv−/− MEFs expressing Inv-GFP. Collectively, our findings point to the significance of Inversin in controlling cell migration processes, at least in part through transcriptional regulation of genes involved in Wnt signaling and pathways that control cytoskeletal organization and ion transport.
Abstract Primary microcephaly (MCPH) is characterized by reduced brain size and intellectual disability. The exact pathophysiological mechanism underlying MCPH remains to be elucidated, but dysfunction of neuronal progenitors in the developing neocortex plays a major role. We identified a homozygous missense mutation (p.W155C) in Ribosomal RNA Processing 7 Homolog A , RRP7A , segregating with MCPH in a consanguineous family with 10 affected individuals. RRP7A is highly expressed in neural stem cells in developing human forebrain, and targeted mutation of Rrp7a leads to defects in neurogenesis and proliferation in a mouse stem cell model. RRP7A localizes to centrosomes, cilia and nucleoli, and patient-derived fibroblasts display defects in ribosomal RNA processing, primary cilia resorption, and cell cycle progression. Analysis of zebrafish embryos supported that the patient mutation in RRP7A causes reduced brain size, impaired neurogenesis and cell proliferation, and defective ribosomal RNA processing. These findings provide novel insight into human brain development and MCPH.
Smad ubiquitin regulatory factor 1 (SMURF1) is a HECT-type E3 ubiquitin ligase that plays a critical role in vertebrate development by regulating planar cell polarity (PCP) signaling and convergent extension (CE). Here we show that SMURF1 is involved in mammalian heart development. We find that SMURF1 is highly expressed in outflow tract cushion mesenchyme and Smurf1-/- mouse embryos show delayed outflow tract septation. SMURF1 is expressed in smooth muscle cells of the coronary arteries and great vessels. Thickness of the aortic smooth muscle cell layer is reduced in Smurf1-/- mouse embryos. We show that SMURF1 is a negative regulator of cardiomyogenesis and a positive regulator of smooth muscle cell and cardiac fibroblast differentiation, indicating that SMURF1 is important for cell-type specification during heart development. Finally, we provide evidence that SMURF1 localizes at the primary cilium where it may regulate bone morphogenetic protein (BMP) signaling, which controls the initial phase of cardiomyocyte differentiation. In summary, our results demonstrate that SMURF1 is a critical regulator of outflow tract septation and cell-type specification during heart development, and that these effects may in part be mediated via control of cilium-associated BMP signaling.
Zagros is a relatively young and active fold-thrust belt, which has formed due to convergence between the Eurasian and Arabian plates. Magnetotelluric (MT) soundings along a transect were carried out to determine the crustal structure in the collision zone of the two Palaeocontinents. MT data were analysed and modelled using 2-D inversion schemes. The models show clear conductive and resistive domains along the MT profile consistent to a great extent with documented tectonic features and surface geology. The models obtained from the joint inversion of transverse electric and transverse magnetic modes as well as the inversion of the determinant data show similar features along the profile. The new MT results reveal that the transition between two continents at the surface coincides with the western boundary of Sanandaj-Sirjan Zone (SSZ) at the Main Zagros Thrust (MZT). Along the profile towards northeast the conductors at top indicate massive Neogene sediments of the central domain (CD) while the very thick, shallow-located, resistive body (5–25 km thick and 100 km long) beneath is unlikely to be of oceanic affinity, but continental. Another main feature along the profile is the main resistive and conductive parts of the Arabian Plate, which coincide with the tectonic events of High Zagros Fault and Mountain Front Fault. Two highly conductive thick zones are recognized at the southwest part and in the middle of the profile apparently extending to a depth of about 50 km, possibly related to a downward smearing effect due to the presence of thick sedimentary columns in the upper crust. Along the profile, conductive features are recognized at the metamorphic SSZ and Urumieh-Dokhtar Magmatic Assemblage units as well as at CD. Below site 31 along the surface trace of the MZT, the transition between the two continents is distinguished by a complex sequence of conductive and resistive zones both varying laterally as well as vertically. The main difference between the two domains is that the Eurasian Plate seems to be more resistive than the Arabian Plate, although some part of the difference can be related to the thick sequence of conductive sedimentary rocks on the Arabian Plate.