Coal mining in China is continually increasing, and the associated emitted coal mine dust is of growing environmental and occupational concern. In this study, deposited coal mine dust (DD) was analysed in three different regions of an active, highly-volatile bituminous open-pit coal mine in the Xingjian Province, Northwest of China: coal working fronts, tailings handling sites, and road traffic sites. Samples were analysed for particle size, and geochemical and mineralogical patterns, and then compared with the respirable DD fractions (RDDs, <4 μm) separated from DD samples. Online measurements of ambient air concentrations of particulate matter (PM10 and PM2.5), black carbon (BC) and ultrafine particles (UFP) were performed in the same mine zones where DD was sampled. Furthermore, the RDD samples were subjected to analysis of specific biological response or toxicological indicators (oxidative potential, OP). The results demonstrated: i) large differences in particle size and composition among DD from tailings handling, road traffic and coal working front sites, ii) a strong influence of the DD moisture contents and ash yields on particle size, and, accordingly, on the potential dust emissions, iii) an enrichment of multiple elements (such as Nb, Th, Cr, Sr, Li, As, Pb, Cu, Zr and Ni) in the RDD from coal working fronts compared with their contents in the worked parent coal seams, mostly attributed to mining machinery, tyre and brake wear emissions and to deposition of dust emitted from gangue working zones, iv) low OP values of the RDD emitted from the studied mine, which works a high-quality coal, with OP being influenced by Mn, sulphate and anatase (TiO2) contents, and v) the impact of specific mining operations and mine areas on the levels of air pollutants, such as high PM from tailings handling in the upper parts of the mine or the high UFP levels in the bottom of the mine (due to vehicle and machinery emissions and lower dispersive conditions). The data presented here demonstrate the necessity of extracting the more deeply respirable size fraction of coal mine dusts in future studies on the health effects of these materials because this finer fraction is mineralogically and geochemically different from the parent rocks.
The 2017–2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project. The main objective was to describe the phenomenology of urban ultrafine particles (UFP) in Europe with a significant air quality focus. The varying lower size detection limits made it difficult to compare PN concentrations (PNC), particularly PN10-25, from different cities. PNCs follow a TR > UB > Suburban (SUB) order. PNC and Black Carbon (BC) progressively increase from Northern Europe to Southern Europe and from Western to Eastern Europe. At the UB sites, typical traffic rush hour PNC peaks are evident, many also showing midday-morning PNC peaks anti-correlated with BC. These peaks result from increased PN10-25, suggesting significant PNC contributions from nucleation, fumigation and shipping. Site types to be identified by daily and seasonal PNC and BC patterns are: (i) PNC mainly driven by traffic emissions, with marked correlations with BC on different time scales; (ii) marked midday/morning PNC peaks and a seasonal anti-correlation with PNC/BC; (iii) both traffic peaks and midday peaks without marked seasonal patterns. Groups (ii) and (iii) included cities with high insolation. PNC, especially PN25-800, was positively correlated with BC, NO2, CO and PM for several sites. The variable correlation of PNSD with different urban pollutants demonstrates that these do not reflect the variability of UFP in urban environments. Specific monitoring of PNSD is needed if nanoparticles and their associated health impacts are to be assessed. Implementation of the CEN-ACTRIS recommendations for PNSD measurements would provide comparable measurements, and measurements of <10 nm PNC are needed for full evaluation of the health effects of this size fraction.
We focus on a comparison of the geochemistry and mineralogy patterns found in coal, deposited dust (DD), respirable deposited dust (RDD) and inhalable suspended dust (PM10) from a number of underground mines located in China, with an emphasis on potential occupational health relevance. After obtaining the RDD from DD, a toxicological analysis (oxidative potential, OP) was carried out and compared with their geochemical patterns. The results demonstrate: i) a dependence of RDD/DD on the moisture content for high rank coals that does not exist for low rank coals; ii) RDD enrichment in a number of minerals and/or elements related to the parent coal, the wear on mining machinery, lime gunited walls and acid mine drainage; and iii) the geochemical patterns of RDD obtained from DD can be compared with PM10 with relatively good agreement, demonstrating that the characterization of DD and RDD can be used as a proxy to help evaluate the geochemical patterns of suspended PM10. With regards to the toxicological properties of RDD, the Fe content and other by-products of pyrite oxidation, as well as that of anatase, along with Si, Mn and Ba, and particle size (among others), were highly correlated with Ascorbic Acid and/or Glutathione OP.
This study evaluates geochemical and oxidative potential (OP) properties of the respirable (finer than 4 μm) fractions of 22 powdered coal samples from channel profiles (CP4) in Chinese mined coals. The CP4 fractions extracted from milled samples of 22 different coals were mineralogically and geochemically analysed and the relationships with the OP evaluated. The evaluation between CP4/CP demonstrated that CP4 increased concentrations of anatase, Cs, W, Zn and Zr, whereas sulphates, Fe, S, Mo, Mn, Hf and Ge decreased their CP4 concentrations. OP results from ascorbic acid (AA), glutathione (GSH) and dithiothreitol (DTT) tests evidenced a clear link between specific inorganic components of CP4 with OPAA and the organic fraction of OPGSH and OPDTT. Correlation analyses were performed for OP indicators and the geochemical patterns of CP4. These were compared with respirable dust samples from prior studies. They indicate that Fe (r = 0.83), pyrite (r = 0.66) and sulphate minerals (r = 0.42) (tracing acidic species from pyrite oxidation), followed by S (r = 0.50) and ash yield (r = 0.46), and, to a much lesser extent, Ti, anatase, U, Mo, V and Pb, are clearly linked with OPAA. Moreover, OPGSH correlation was identified by organic matter, as moisture (r = 0.73), Na (r = 0.56) and B (r = 0.51), and to a lesser extent by the coarse particle size, Ca and carbonate minerals. In addition, Mg (r = 0.70), B (r = 0.47), Na (r = 0.59), Mn, Ba, quartz, particle size and Sr regulate OPDTT correlations. These became more noticeable when the analysis was done for samples of the same type of coal rank, in this case, bituminous.
Investigations into the respiratory health impacts of coal mine particulate matter (PM) face the challenge of understanding its chemical complexity. This includes highly variable concentrations of trace metals and metalloids such as Fe, Ti, Mn, Zn, Ni, V, Cr, Cu, Pb, Cd, Sb, As and Sn, which may be capable of inducing cell damage. Analysis of PM10 and PM2.5 samples size-separated from deposited coal mine dusts collected on PVC flat surfaces at a height of 1.5-2 m inside the second level in the Velenje lignite mine, Slovenia, demonstrates that some of these metallic elements (in this case Cu, Sb, Sn, Pb, Zn, As, Ni) can be concentrated in PM2.5, the most deeply inhalable and therefore potentially most bioreactive size fraction. These elements are likely to be mainly present in silicates, oxides, and perhaps antimonides and arsenides, rather than in the calcareous, carbonaceous or sulphide components which show no obvious affinity for PM2.5. Whereas in the Velenje lignites concentrations of these metallic elements are low and so do not present any obvious extra health risk to the miners, this is unlikely to be the case in mines where unusually metal-enriched coals are being excavated. We therefore recommend that levels of potentially toxic elements in PM2.5 should be assessed where metal- and metalloid-rich coals are being mined worldwide, especially given uncertainties relating to the efficiency of current dust suppression and respiratory protective equipment for such fine particle sizes.
Abstract Despite international efforts to limit worker exposure to coal dust, it continues to impact the health of thousands of miners across Europe. Airborne coal dust has been studied to improve risk models and its control to protect workers. Particle size distribution analyses shows that using spraying systems to suppress airborne dusts can reduce particulate matter concentrations and that coals with higher ash yields produce finer dust. There are marked chemical differences between parent coals and relatively coarse deposited dusts (up to 500 µm, DD 500 ). Enrichments in Ca, K, Ba, Se, Pb, Cr, Mo, Ni and especially As, Sn, Cu, Zn and Sb in the finest respirable dust fractions could originate from: (i) mechanical machinery wear; (ii) variations in coal mineralogy; (iii) coal fly ash used in shotcrete, and carbonates used to reduce the risk of explosions. Unusual enrichments in Ca in mine dusts are attributed to the use of such concrete, and elevated K to raised levels of phyllosilicate mineral matter. Sulphur concentrations are higher in the parent coal than in the DD 500 , probably due to relatively lower levels of organic matter. Mass concentrations of all elements observed in this study remained below occupational exposure limits.