Abstract In order to address lack of data regarding coastal carbon budgets, we estimated the annual metabolic carbon budget of an intertidal rocky reef macroalgal community during emersion. This budget is based on direct in situ measurements during emersion and establishes the seasonal variations of the photosynthetic parameters of such a community. CO 2 fluxes were measured hourly to study the response of community gross primary productivity (GPP) to irradiance and the variation of GPP and community respiration (CR) over the emersion period at different times of the year. These were combined together with existing monthly measures of GPP and CR hourly rates to model the variations of these fluxes as a function of irradiance and the tidal cycle throughout an entire calendar year. Daily, monthly and annual values of GPP, CR and net primary productivity (NPP) were calculated with a relatively low sensitivity to any of the parameters used. While GPP fluxes show comparable orders of magnitude to those measured in other systems, higher CR fluxes lead to a heterotrophic system during emersion, both under measured (NPP = −299 gC m −2 year −1 ) and theoretical irradiances (NPP = −119 gC m −2 year −1 ). This heterotrophy is directly linked to the light availability, varying according to combined daily, tidal and seasonal cycles, and to temperature at the seasonal scale. Measurements performed in situ at the community scale integrated interactions that are otherwise absent at the individual scale. This gives access to aspects of the functioning that cannot be otherwise identified.
Fresh weight (FW), dry weight (DW), carbon and nitrogen content were measured for specimens of Laminaria saccharina (Heterokontophyta: Phaeophyceae) sampled in the eastern English Channel in order to conduct a biometrical study. The aim was to relate carbon and nitrogen masses of the algae to a simple and rapid morphological measurement of the total length of the sporophyte. These relationships were highly significant and appeared very useful to express the standing biomass of L. saccharina in terms of carbon or nitrogen and then to consider dynamic processes such as primary production. Variations in tissue carbon (C) and nitrogen (N) were examined over a complete seasonal cycle. Average carbon and nitrogen content ranged from 23·9 to 31·4% and 2·23 to 3·42% of the total dry weight, respectively. Variations in C/N ratio showed a clear seasonal pattern with an increase in the early spring corresponding to strong photosynthesis and growth.
Abstract Laminaria saccharina (Lamouroux) form the largest, most abundant and conspicuous seaweed populations along the French coast of the eastern English Channel. As they are located in the intertidal zone, they are exposed to considerable irradiance variations, mainly related to tidal cycles. The response of these macro‐algae to light variations over a simulated daily tidal cycle was investigated in the laboratory during spring, autumn and winter using chlorophyll fluorescence and pigment analysis. The maximum quantum yield of photosystem II (PSII) photochemistry ( F v / F m ) and the operating PSII efficiency ( Φ PSII ) showed clear daily cycles according to the irradiance variation throughout the 12 h simulated tidal cycle, whereas the pattern of the relative photosynthetic electron transport rate (rETR) was not so obvious. The algae reacted to the light increase by developing photoprotective mechanisms able to dissipate the excess energy reaching PSII by the de‐epoxidation of violaxanthin into zeaxanthin. Because of their better acclimation to strong irradiance, spring populations were less affected by this light treatment than were winter populations. In particular, L. saccharina showed more pigments of the xanthophyll cycle in spring to cope with strong irradiance exposure. Alternatively, they developed their antenna complexes in winter to harvest a maximum of light.
Abstract Species interactions are integral drivers of community structure and can change from competitive to facilitative with increasing environmental stress. In subtidal marine ecosystems, however, interactions along physical stress gradients have seldom been tested. We observed seaweed canopy interactions across depth and latitudinal gradients to test whether light and temperature stress structured interaction patterns. We also quantified interspecific and intraspecific interactions among nine subtidal canopy seaweed species across three continents to examine the general nature of interactions in subtidal systems under low consumer pressure. We reveal that positive and neutral interactions are widespread throughout global seaweed communities and the nature of interactions can change from competitive to facilitative with increasing light stress in shallow marine systems. These findings provide support for the stress gradient hypothesis within subtidal seaweed communities and highlight the importance of canopy interactions for the maintenance of subtidal marine habitats experiencing environmental stress.
A description is provided of the large-scale spatial distribution of the diversity of the benthic macrofauna in the eastern English Channel. Data from the oceanographic cruises of the RCP (Recherche Coopérative sur Programme) Benthos de la Manche Research Programme were obtained during the summers of 1971 to 1975. A total of 707 samples were analysed. Diversity of each sample was measured by means of the species richness (i.e. the total number of species present), the Shannon-Weaver diversity index and Pielou's evenness index. Diversity values were plotted for all 707 oceanographic stations in the area, following a smoothing procedure. Large-scale spatial trends of diversity of the benthic macrofauna were analysed in relation to sediment and species assemblage distribution, but no spatial correlation was found between the two factors. These results indicate that mechanisms affecting large-scale spatial distribution of the diversity are different from those acting on a smaller scale. The role of the hydro-sedimentary processes acting at the geographic scale of the eastern English Channel as presumptive causes of this large-scale pattern of the macrobenthic diversity is discussed.