We investigate the performances of GRACE and GRACE Follow-On satellite gravimetry missions in assessing the ocean mass budget at global scale over 2005-2020. For that purpose, we focus on the last years of the record (2015-2020) when GRACE and GRACE Follow-On faced instrumental problems. We compare the global mean ocean mass estimates from GRACE and GRACE Follow-On to the sum of its contributions from Greenland, Antarctica, land glaciers, terrestrial water storage and atmospheric water content estimated with independent observations. Significant residuals are observed in the global mean ocean mass budget at interannual time scales. Our analyses suggest that the terrestrial water storage variations based on global hydrological model likely contributes to a large part to the misclosure of the global mean ocean mass budget at interannual time scales. We also compare the GRACE-based global mean ocean mass with the altimetry-based global mean sea level corrected for the Argo-based thermosteric contribution (an equivalent of global mean ocean mass). After correcting for the wet troposphere drift of the radiometer on-board the Jason-3 altimeter satellite, we find that mass budget misclosure is reduced but still significant. However, replacing the Argo-based thermosteric component by the ORAS5 ocean reanlaysis or from CERES top of the atmosphere observations leads to closure of the mass budget over the 2015-2020 time span. We conclude that the two most likely sources of error in the global mean ocean mass budget are the thermosteric component based on Argo and the terrestrial water storage contribution based on global hydrological models. The GRACE and GRACE Follow-On data are unlikely to be responsible on their own for the non-closure of the global mean ocean mass budget.
The Earth energy imbalance (EEI) at the top of the atmosphere (TOA) is the cause of the energy accumulation in the climate system. Measuring the EEI is challenging because it is a globally integrated variable whose variations are small (0.5-1 W.m−2) compared to the amount of energy entering and leaving the climate system (~ 340 W.m-2). 91% of the excess of energy stored by the planet in response to the EEI is accumulated in the ocean in the form of heat making the ocean heat content (OHC) change an accurate proxy of EEI. In this work, we adopt the space geodetic approach which relies on the sea level budget equation to estimate the OHC changes. The thermosteric sea level change is derived at regional scale from a combination of space altimetry and space gravimetry observations, and divided by the integrated expansion efficiency of heat  to estimate the OHC changes. The global OHC (GOHC) change is then estimated by a spatial integration of the regional OHC changes. The uncertainty in GOHC is estimated by propagation of the uncertainty of input data using the input data error variance-covariance matrix to account for the instrumental and post-processing errors and for the time correlation in errors. Regional estimates of the OHC changes are validated over the Atlantic Ocean directly against data from in-situ Argo profiles and indirectly by an energy budget approach. In the energy budget approach, surface heat flux derived from ERA5 and CERES TOA radiation budget are combined with regional OHC changes to estimate the north Atlantic meridional heat transport which is then validated against in-situ RAPID and OSNAP estimates. Both validations show good agreement in terms of signal amplitudes and variability with time correlations above 0.6.    Over the period 1993-2022, the GOHC shows a significant positive trend of 0.75 W m-2 [0.61, 1.04] at the 90% confidence level, indicating a positive mean ocean heat uptake or EEI. Comparisons with GOHC estimates based on in-situ ocean temperature measurements over the full ocean depth show good agreement over 2005-2019 (Marti et al. 2023, in review). Over 2000-2020, the ocean heat uptake presents a positive trend of 0.33 W/m²/decade, significant at the 90% confidence level and in agreement with CERES estimate. This EEI trend  reflects an acceleration in ocean warming.   The two space geodetic products based on space altimetry and space gravimetry are freely available on the AVISO website. One estimating the GOHC and EEI (https://doi.org/10.24400/527896/a01-2020.003), the other estimating regional OHC over the Atlantic Ocean (https://doi.org/10.24400/527896/a01-2022.012).
Abstract. We investigate the performances of Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) satellite gravimetry missions in assessing the ocean mass budget at the global scale over 2005–2020. For that purpose, we focus on the last years of the record (2015–2020) when GRACE and GRACE Follow-On faced instrumental problems. We compare the global mean ocean mass estimates from GRACE and GRACE Follow-On to the sum of its contributions from Greenland, Antarctica, land glaciers, terrestrial water storage and atmospheric water content estimated with independent observations. Significant residuals are observed in the global mean ocean mass budget at interannual timescales. Our analyses suggest that the terrestrial water storage variations based on global hydrological models likely contribute in large part to the misclosure of the global mean ocean mass budget at interannual timescales. We also compare the GRACE-based global mean ocean mass with the altimetry-based global mean sea level corrected for the Argo-based thermosteric contribution (an equivalent of global mean ocean mass). After correcting for the wet troposphere drift of the radiometer on board the Jason-3 altimeter satellite, we find that mass budget misclosure is reduced but still significant. However, replacing the Argo-based thermosteric component by the Ocean Reanalysis System 5 (ORAS5) or from the Clouds and the Earth's Radiant Energy System (CERES) top of the atmosphere observations significantly reduces the residuals of the mass budget over the 2015–2020 time span. We conclude that the two most likely sources of error in the global mean ocean mass budget are the thermosteric component based on Argo and the terrestrial water storage contribution based on global hydrological models. The GRACE and GRACE Follow-On data are unlikely to be responsible on their own for the non-closure of the global mean ocean mass budget.
Abstract Air-sea interaction processes over the Gulf Stream have received particular attention over the last decade. It has been shown that sea surface temperature (SST) gradients over the Gulf Stream can alter the near surface wind divergence through changes in the marine atmospheric boundary layer (MABL). Two mechanisms have been proposed to explain the response: the Vertical Mixing Mechanism (VMM) and the Pressure Adjustment Mechanism (PAM). However, their respective contribution is still under debate. It has been argued that the synoptic perturbations over the Gulf Stream can provide more insight on the MABL response to SST fronts. We analyze the VMM and PAM under different atmospheric conditions obtained from a classification method based on the deciles of the statistical distribution of winter turbulent heat fluxes over the Gulf Stream. Lowest deciles are associated with weak air-sea interactions and anticyclonic atmospheric circulation over the Gulf Stream, whereas highest deciles are related to strong air-sea interactions and a cyclonic circulation. Our analysis includes the low and high-resolution versions of the ARPEGEv6 atmospheric model forced by observed SST, and the recently released ERA5 global reanalysis. We find that the occurrence of anticyclonic and cyclonic perturbations associated with different anomalous wind regimes can locally modulate the activation of the VMM and the PAM. In particular, the PAM is predominant in anticyclonic conditions, whereas both mechanisms are equally present in most of the cyclonic conditions. Our results highlight the role of the atmospheric circulation and associated anomalous winds in the location, strength and occurrence of both mechanisms.
Abstract. The estimation of the regional Ocean Heat Content (OHC) is essential for climate analysis and future climate predictions. In this study, we propose a method to estimate and propagate uncertainties in regional OHC changes. The OHC is estimated with space geodetic steric data corrected from salinity variations estimated with in situ measurements. A variance-covariance matrix method is used to propagate uncertainties from space geodetic data to the OHC change. The integrated OHC change over the Atlantic basin is 0.17 W m-2 which represents 21 % of the global OHC trend, with significant trends observed in 52 % of the Atlantic basin. Uncertainties in OHC trends are mainly attributed to manometric sea level change uncertainties. We validate our space geodetic OHC estimates at two test sites, representing the subtropical and subpolar regions of the North Atlantic, highlighting their importance in understanding climate dynamics. Our results show good agreement between space geodetic estimates and in situ measurements in the North Atlantic region. The space geodetic OHC trends reveal a warming pattern in the southern and western parts of the North Atlantic, particularly in the Gulf Stream region, while the northeastern part exhibits cooling trends. Overall, our study provides valuable insights and a new framework to estimate regional OHC change and its uncertainties, contributing to a better understanding of the Earth's climate system and its future projections. The space geodetic OHC change product (version 1.0) is freely available at https://doi.org/10.24400/527896/a01-2022.012 (Magellium/LEGOS, 2022)
Abstract. The estimation of the regional Ocean Heat Content (OHC) is essential for climate analysis and future climate predictions. In this study, we propose a method to estimate and propagate uncertainties in regional OHC changes. The OHC is estimated with space geodetic steric data corrected from salinity variations estimated with in situ measurements. A variance-covariance matrix method is used to propagate uncertainties from space geodetic data to the OHC change. The integrated OHC change over the Atlantic basin is 0.17 W m-2 which represents 21 % of the global OHC trend, with significant trends observed in 52 % of the Atlantic basin. Uncertainties in OHC trends are mainly attributed to manometric sea level change uncertainties. We validate our space geodetic OHC estimates at two test sites, representing the subtropical and subpolar regions of the North Atlantic, highlighting their importance in understanding climate dynamics. Our results show good agreement between space geodetic estimates and in situ measurements in the North Atlantic region. The space geodetic OHC trends reveal a warming pattern in the southern and western parts of the North Atlantic, particularly in the Gulf Stream region, while the northeastern part exhibits cooling trends. Overall, our study provides valuable insights and a new framework to estimate regional OHC change and its uncertainties, contributing to a better understanding of the Earth's climate system and its future projections. The space geodetic OHC change product (version 1.0) is freely available at https://doi.org/10.24400/527896/a01-2022.012 (Magellium/LEGOS, 2022)
Abstract. The estimation of the regional Ocean Heat Content (OHC) is essential for climate analysis and future climate predictions. In this study, we propose a method to estimate and propagate uncertainties in regional OHC changes. The OHC is estimated with space geodetic steric data corrected from salinity variations estimated with in situ measurements. A variance-covariance matrix method is used to propagate uncertainties from space geodetic data to the OHC change. The integrated OHC change over the Atlantic basin is 0.17 W m-2 which represents 21 % of the global OHC trend, with significant trends observed in 52 % of the Atlantic basin. Uncertainties in OHC trends are mainly attributed to manometric sea level change uncertainties. We validate our space geodetic OHC estimates at two test sites, representing the subtropical and subpolar regions of the North Atlantic, highlighting their importance in understanding climate dynamics. Our results show good agreement between space geodetic estimates and in situ measurements in the North Atlantic region. The space geodetic OHC trends reveal a warming pattern in the southern and western parts of the North Atlantic, particularly in the Gulf Stream region, while the northeastern part exhibits cooling trends. Overall, our study provides valuable insights and a new framework to estimate regional OHC change and its uncertainties, contributing to a better understanding of the Earth's climate system and its future projections. The space geodetic OHC change product (version 1.0) is freely available at https://doi.org/10.24400/527896/a01-2022.012 (Magellium/LEGOS, 2022)
<p>Given the major role of the Atlantic Ocean in the climate system, it is essential to characterize the temporal and spatial variations of its heat content. The 4DATLANTIC-OHC Project (https://eo4society.esa.int/projects/4datlantic-ohc/) aims at developing and testing space geodetic methods to estimate the local ocean heat content (OHC) changes over the Atlantic Ocean from satellite altimetry and gravimetry. The strategy developed in the frame of the ESA MOHeaCAN Project (https://eo4society.esa.int/projects/moheacan/) is pursued and refined at local scales both for the data generation and the uncertainty estimate. At two test sites, OHC derived from in situ data (RAPID and OVIDE-AR7W) are used to evaluate the accuracy and reliability of the new space geodetic based OHC change. The Atlantic OHC product will be used to better understand the complexity of the Earth&#8217;s climate system. In particular, the project aims at better understanding the role played by the Atlantic Meridional Overturning Circulation (AMOC) in regional and global climate change, and the variability of the Meridional Heat transport in the North Atlantic. In addition, improving our knowledge on the Atlantic OHC change will help to better assess the global ocean heat uptake and thus estimate the Earth&#8217;s energy imbalance more accurately as the oceans absorb about 90% of the excess energy stored by the Earth system.</p><p>The objectives of the 4DATLANTIC-OHC Project will be presented. The scientific requirements and data used to generate the OHC change products over the Atlantic Ocean and the first results in terms of development will be detailed. At a later stage, early adopters are expected to assess the OHC products strengths and limitations for the implementation of new solutions for Society. The project started in June 2021 for a 2-year duration.</p><p>Visit https://www.4datlantic-ohc.org to follow the main steps of the project.</p>