The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean, and sampled the surface of oceanic waters at 249 locations, resulting in the collection of nearly 58,000 samples (Gorsky et al. 2019, Planes et al. 2019, Flores et al. 2020). The expedition was designed to systematically study corals, fish, plankton, and seawater, and included the collection of samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide the continuous dataset originating from the hyperspectral and multispectral spectrophotometers [ACS] instruments acquiring continuously during the full course of the campaign. Surface seawater was pumped continuously through a hull inlet located 1.5 m under the waterline using a membrane pump (10 LPM; Shurflo), circulated through a vortex debubbler, a flow meter, and distributed to a number of flow-through instruments. An [ACS] spectrophotometer (WETLabs) measured hyper-spectral (4 nm resolution) attenuation and absorption in the visible and near infrared except between Panama and Tahiti where an AC-9 multispectral spectrophotometer (WETLabs) was used instead. The flow was automatically directed through a 0.2 µm filter for 10 minutes every hour before being circulated through the spectrophotometer to eliminate the impact of biofouling and instrument drift and estimate particulate absorption [ap] and attenuation [cp] (Slade et al. 2010). Chlorophyll a content was estimated from particulate absorption line height at 676 nm (Boss et al. 2001). The particulate organic carbon concentration [poc] was estimated using an empirical relation (Gardner et al. 2006) between measured [poc] and measured [cp]. An indicator for size distribution of particles between 0.2 and ~20 µm [gamma] was calculated from [cp] (Boss et al 2001). The data was processed with custom software for underway optical data (InLineAnalysis software available on GitHub). The detailed information regarding the data processing is given in the processing report attached with the data and in Lombard et al. (In prep.). These results are preliminary: no matchup with in-situ chlorophyll from HPLC or [poc] measurements were performed.
This data is the result of the primary analysis of the ITS2 sequencing data associated with the Coral Diversity dataset collected from all islands as part of the Tara Pacific expedition. A full README is contained within the data upload.
Abstract Increasingly frequent severe coral bleaching is among the greatest threats to coral reefs posed by climate change. Global climate models (GCMs) project great spatial variation in the timing of annual severe bleaching (ASB) conditions; a point at which reefs are certain to change and recovery will be limited. However, previous model-resolution projections (~1 × 1°) are too coarse to inform conservation planning. To meet the need for higher-resolution projections, we generated statistically downscaled projections (4-km resolution) for all coral reefs; these projections reveal high local-scale variation in ASB. Timing of ASB varies >10 years in 71 of the 87 countries and territories with > 500 km 2 of reef area. Emissions scenario RCP4.5 represents lower emissions mid-century than will eventuate if pledges made following the 2015 Paris Climate Change Conference (COP21) become reality. These pledges do little to provide reefs with more time to adapt and acclimate prior to severe bleaching conditions occurring annually. RCP4.5 adds 11 years to the global average ASB timing when compared to RCP8.5; however, >75% of reefs still experience ASB before 2070 under RCP4.5. Coral reef futures clearly vary greatly among and within countries, indicating the projections warrant consideration in most reef areas during conservation and management planning.
Patterns of connectivity and self-recruitment are recognized as key factors shaping the dynamics of marine populations. Connectivity is also essential for maintaining and restoring natural ecological processes with genetic diversity contributing to the adaptation and persistence of any species in the face of global disturbances. Estimates of connectivity are crucial to inform the design of both marine protected areas (MPAs) and MPA networks. Among several approaches, genetic structure is frequently used as a proxy for patterns of connectivity. Using 8 microsatellite loci, we investigated genetic structure of the two-banded sea bream Diplodus vulgaris, a coastal fish that is both commercially and ecologically important. Adults were sampled in 7 locations (stretches of coastline approximately 8 km long) and juveniles in 14 sites (~100 to 200 m of coastline) along 200 km of the Apulian Adriatic coast (SW Adriatic Sea), within and outside an MPA (Torre Guaceto MPA, Italy). Our study found similar genetic diversity indices for both the MPA and the surrounding fished areas. An overall lack of genetic structure among samples suggests high gene flow (i.e. connectivity) across a scale of at least 200 km. However, some local genetic divergences found in two locations demonstrate some heterogeneity in processes renewing the population along the Apulian Adriatic coast. Furthermore, two sites appeared genetically divergent, reinforcing our observations within the genetic makeup of adults and confirming heterogeneity in early stage genetics that can come from either different supply populations or from chaotic genetic patchiness occurring under temporal variation in recruitment and in the reproductive success. While the specific role of the MPA is not entirely known in this case, these results confirm the presence of regional processes and the key role of connectivity in maintaining the local population supply.
Abstract Coral microbiomes are critical to holobiont functioning, but much remains to be understood about how prevailing environment and host genotype affect microbial communities in ecosystems. Resembling human identical twin studies, we examined bacterial community differences of naturally occurring fire coral clones within and between contrasting reef habitats to assess the relative contribution of host genotype and environment to microbiome structure. Bacterial community composition of coral clones differed between reef habitats, highlighting the contribution of the environment. Similarly, but to a lesser extent, microbiomes varied across different genotypes in identical habitats, denoting the influence of host genotype. Predictions of genomic function based on taxonomic profiles suggest that environmentally determined taxa supported a functional restructuring of the microbial metabolic network. In contrast, bacteria determined by host genotype seemed to be functionally redundant. Our study suggests microbiome flexibility as a mechanism of environmental adaptation with association of different bacterial taxa partially dependent on host genotype.
The structure and functioning of coral reef coastal zones are currently coping with an increasing variety of threats, thereby altering the coastal spatial patterns at an accelerated pace. Understanding and predicting the evolution of these highly valuable coastal ecosystems require reliable and frequent mapping and monitoring of both inhabited terrestrial and marine areas at the individual tree and coral colony spatial scale. The very high spatial resolution (VHR) mapping that was recently spearheaded by WorldView-2 (WV2) sensor with 2 m and 0.5 m multispectral (MS) and panchromatic (Pan) bands has the potential to address this burning issue. The objective of this study was to classify nine terrestrial and twelve marine patch classes with respect to spatial resolution enhancement and coast integrity using eight bands of the WV2 sensor on a coastal zone of Moorea Island, French Polynesia. The contribution of the novel WV2 spectral bands towards classification accuracy at 2 m and 0.5 m were tested using traditional and innovative Pan-sharpening techniques. The land and water classes were examined both separately and combinedly. All spectral combinations that were built only with the novel WV2 bands systematically increased the overall classification accuracy of the standard four band classification. The overall best contribution was attributed to the coastal-red edge-near infrared (NIR) 2 combination (Kappagain = 0.0287), which significantly increased the fleshy and encrusting algae (User’s Accuracygain = 18.18%) class. However, the addition of the yellow-NIR2 combination dramatically impacted the hard coral/algae patches class (Producer’s Accuracyloss = −20.88%). Enhancement of the spatial resolution reduced the standard classification accuracy, depending on the Pan-sharpening technique. The proposed composite method (local maximum) provided better overall results than the commonly used sensor method (systematic). However, the sensor technique produced the highest contribution to the hard coral thicket (PAgain = 30.36%) class with the coastal-red edge-NIR2 combination. Partitioning the coast into its terrestrial and aquatic components lowered the overall standard classification accuracy, while strongly enhancing the hard coral bommie class with the coastal-NIR2 combination (UAgain = 40%) and the green-coastal Normalized Difference Ratio (UAgain = 11.06%). VHR spaceborne remote sensing has the potential to gain substantial innovative insights into the evolution of tropical coastal ecosystems from local to regional scales, to predict the influence of anthropogenic and climate changes and to help design optimized management and conservation frameworks.